Research
研究プロジェクト・論文・書籍等
- 論文
STFT spectral loss for training a neural speech waveform model
- #音声処理
- #音声合成
2019 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019)
This paper proposes a new loss using short-time Fourier transform (STFT) spectra for the aim of training a high-performance neural speech waveform model that predicts raw continuous speech waveform samples directly. Not only amplitude spectra but also phase spectra obtained from generated speech waveforms are used to calculate the proposed loss. We also mathematically show that training of the waveform model on the basis of the proposed loss can be interpreted as maximum likelihood training that assumes the amplitude and phase spectra of generated speech waveforms following Gaussian and von Mises distributions, respectively. Furthermore, this paper presents a simple network architecture as the speech waveform model, which is composed of uni-directional long short-term memories (LSTMs) and an auto-regressive structure. Experimental results showed that the proposed neural model synthesized high-quality speech waveforms.