

Multiple Feed-forward Deep Neural Networks for Statistical Parametric Speech Synthesis

Shinji Takaki¹, SangJin Kim², Junichi Yamagishi^{1,3}, JongJin Kim²

¹National Institute of Informatics, ²Naver Labs, ³The Centre for Speech Technology Research, University of Edinburgh

1. introduction

Statistical parametric speech synthesis (SPSS)

- HMM-based speech synthesis [Tokuda et al.; 00]
- DNN-based speech synthesis [Zen et al.; 12]

DNNs have high potential in SPSS

• Further Investigation of DNNs for other tasks in SPSS is needed

Standard components for SPSS

- Acoustic feature extraction (Mel-cep, LSP)
- Acoustic modeling (HMM, DNN)
- Smoothing (MLPG with delta, Recurrent NN)
- Enhancement (GV, Post-filter)

Feed-forward DNNs are used in this work

All standard steps of SPSS are performed using DNNs

2. Feed-forward DNNs for SPSS

Feature Extraction

Acoustic modeling [Takaki et al.; 15]

Post-filtering [Chen et al.; 14]

Deep Auto-encoder (DAE)

- Typical purpose is dimensionality reduction
- Same features are used as input and output (Spectra obtained from STRAIGHT)
- Outputs of a encoder part can be used as dimensionality reduced features

Non-linear

Vocal tract has a non-linear

Statistical and unsupervised approach

- Data driven, speaker dependent
- Automatically extract appropriate feature

Extracting low-dimensional spectral parameter

Low-dimentional spectral parameter

→ Quality loss

Direct synthesis of spectral amplitudes

 Catch the spectral fine structure Difficulty of DNN training

- Local maxima, Vanishing gradient
- **High Dimensionality**
- Mel-cepstrum: 60 dims.
- Spectral amplitude: 2049 dims.
- → Efficient training technique would be needed

Pre-training with a DAE and a DNN AM

The general flow for constructing SPSS

Function-wise pre-training for DNN-based speech synthesis

258 dims.

5 hidden

layers

(1024 units)

897 dims.

Network Configurations

DNN system

Acoustic features

Linguistic features

Model of the difference between synthesized and natural spectra

Consecutive inputs & outpus

- Considering the differences in the timefrequency domain
- Spectral peak enhancement
- Spectral smoothing

Spectral amplitude

2049 dims.

60 units

2 hidden layers

(2049 & 500 units)

5 hidden layers

(1024 units)

897 dims.

Smoothing and enhancement steps are simultaneously performed

Combination of DNNs are used for constructing the proposed system

6147 dims.

2 hidden

layers

(2048 units)

MDNNs1 and MDNNs2 systems

Enhanced

spectral amplitude

Synthesized

spectral amplitude

Post-filtering DNN

3. Experiments

Acoustic features for HMM / DNN : Spectral parameter, log F0, 25-dim band aperiodicity and their $\Delta + \Delta^2$

English (Test: 15 samples * 33 subjects)

Database	Professional female 12,085 utts. (17 hours)
Test set	200 sentences
Sampling rate	48 kHz
FFT points / Cepstrum dims	4096 (2049-dim) / 59

Korean (Test: 15 samples * 23 subjects)

	·
Database	Professional female
(Manual alignments)	11,937 utts. (38 hours)
Test set	200 sentences
Sampling rate	16 kHz
FFT points / Cepstrum dims	2048 (1025-dim) / 39

US is rated higher than HMM in Korean

Linguistic features

Acoustic model DNN

Manual alignments & Large corpus size

DNN outperformed US in both

• Although there were not many artifacts in US, subjects did not prefer US samples in Korean HMM v.s. MDNNs1 and DNN v.s. MDNNs2

- Proposed combination systems produce more
- natural sounds in English In Korean, completely opposite outcome to the **English findings**
 - → Investigation into 16 kHz sample is needed

Future work

- Proposed framework for F0 and aperiodicity
- Recurent and convolution networks