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Database Professional female 
12,085 utts. (17 hours)	


Test set 200 sentences	


Sampling rate 48 kHz	


FFT points / Cepstrum dims 4096 (2049-dim) / 59	


Database 
(Manual alignments) 

Professional female 
11,937 utts. (38 hours)	


Test set 200 sentences	


Sampling rate 16 kHz	


FFT points / Cepstrum dims 2048 (1025-dim) / 39	


US Unit selection based speech synthesis 
HMM HMM-based speech synthesis with GV	


MDNNs1 Proposed technique 
F0 and aperiodicity measures : HMM synthesis 

DNN Conventional single DNN speech synthesis with a 
signal processing-based post-filter	


MDNNs1 Proposed technique 
F0 and aperiodicity measures : DNN synthesis	
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3. Experiments	


・Methods 

・English (Test : 15 samples * 33 subjects) 

・Korean (Test : 15 samples * 23 subjects) 

Acoustic features for HMM / DNN : Spectral parameter, log F0, 25-dim band aperiodicity and their  
US is rated higher than HMM in Korean 

• Manual alignments & Large corpus size 
DNN outperformed US in both

• Although there were not many artifacts in US, 
subjects did not prefer US samples in Korean 

HMM v.s. MDNNs1 and DNN v.s. MDNNs2
• Proposed combination systems produce more 

natural sounds in English 
•  In Korean, completely opposite outcome to the 

English findings 
  → Investigation into 16 kHz sample is needed 

2. Feed-forward DNNs for SPSS	


Feature Extraction	
 Acoustic modeling [Takaki et al.; 15]	
 Post-filtering [Chen et al.; 14] 	


1. introduction	
 Standard components for SPSS 
•  Acoustic feature extraction (Mel-cep, LSP) 
•  Acoustic modeling (HMM, DNN) 
•  Smoothing (MLPG with delta, Recurrent NN) 
•  Enhancement (GV, Post-filter) 

Future work 
•  Proposed framework for F0 and aperiodicity 
•  Recurent and convolution networks	


All standard steps of SPSS are performed using DNNs 

Statistical parametric speech synthesis (SPSS) 
• HMM-based speech synthesis [Tokuda et al.; 00] 
• DNN-based speech synthesis [Zen et al.; 12] 

DNNs have high potential in SPSS 
• Further Investigation of DNNs for other tasks in SPSS is needed

Feed-forward DNNs are  
used in this work 

 	


Deep Auto-encoder (DAE) 
•  Typical purpose is dimensionality reduction 
•  Same features are used as input and output 
   (Spectra obtained from STRAIGHT) 
•  Outputs of a encoder part can be used as  
   dimensionality reduced features 

Non-linear 
•  Vocal tract has a non-linear 

Statistical and unsupervised approach 
•  Data driven, speaker dependent 
•  Automatically extract appropriate feature 

Extracting low-dimensional 
spectral parameter 

Low-dimentional spectral parameter 
  → Quality loss 
Direct synthesis of spectral amplitudes 

•  Catch the spectral fine structure 
Difficulty of DNN training 

•  Local maxima, Vanishing gradient 
•  High Dimensionality 

•  Mel-cepstrum : 60 dims. 
•  Spectral amplitude : 2049 dims. 

   → Efficient training technique would be needed 
Pre-training with a DAE and a DNN AM

•  The general flow for constructing SPSS 
Function-wise pre-training for 
DNN-based speech synthesis 

Model of the difference between 
 synthesized and natural spectra  

Consecutive inputs & outpus 
•  Considering the differences in the time-

frequency domain 
•  Spectral peak enhancement 
•  Spectral smoothing 

Smoothing and enhancement steps  
are simultaneously performed 

Combination of DNNs are used 
   for constructing the proposed system	


DNN system 

Linguistic features	


Acoustic features 
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897 dims.	


258 dims.	


5 hidden 
layers 

(1024 units) 

Acoustic model DNN 
Linguistic features	
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897 dims.	


60 units 

5 hidden layers 
(1024 units) 

Spectral amplitude 

2049 dims.	


2 hidden layers 
(2049 & 500 units) 
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MDNNs1 and MDNNs2 systems 

Post-filtering DNN 

Enhanced 
spectral amplitude 

6147 dims.	
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Synthesized 
spectral amplitude 
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・・・	


6147 dims.	


2 hidden 
layers 

(2048 units) 

Network Configurations	



