Investigating RNN-based speech enhancement methods for
noise-robust Text-to-Speech
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Introduction Proposed TTS training framework

In this work we train a recurrent neural network RNN-V
with BLSTM layers to enhance noisy speech prior
to TTS training.
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RNN-DFT uses short-term Fourier transform (STFT):
87 MCEP extracted from magnitude spectrum Subjective rank scores were obtained via a MUSHRA test with 24 native English speakers.

MCEP (dB)  BAP (dB)  V/UV (%) Fo (HZ2)
Dataset NOISY 0.86/10.68 2.62/241 955/7.88 40.27/ 4.38
CLEAN* 1.84/ 161 1.24/1.10 058/062 17.14/ 1.84
We created a noisy speech database** using: NOISY* 941/10.13 2.75/250 10.39/8.49 41.17/4.70
OMLSA 819/ 836 3.15/277 8.73/8.28 34.03/ 6.31
- the VCTK speech corpus (400 sentences / speaker) RNN-V 4,59/ 5.05 1.86/1.72 246/2.15 2490/ 8.43
train set : 56 English speakers (~32hrs) RNN-DFT 490/ 5.22 244 /232 2.06/244 22.59/ 3.31
testset: : 2 English speakers (~1hr)

Distortion measures calculated from the vocoded parameters
of the female / male voice. * are STFT resynthesised clean

- the Demand noise database L
and noisy signals.

train set: 8 noises from Demand
2 artificially created noises
4 SNRs (15,10, 5,0 dB)
test set : 5 noises from Demand
4 SNRs (17.5,12.5,7.5,2.5 dB)

We have found that although MCEP distortion is higher, the RNN-DFT method was rated of a
higher quality for both vocoded and synthetic speech for all speakers. The reconstruction
process required in the RNN-DFT method does not negatively impact results.

The synthetic voices trained using data enhanced with this method were rated similar to

In total 40 (20) noisy conditions for training (testing), voices trained with clean speech

so that every 10 (20) sentences are from a
different noisy condition. This work was supported by EPSRC Programme Grant EP/1031022/1 Natural Speech Technology (NST)

**The full NST research data collection may be accessed at http://hdl.handle.net/10283/786




