

Enhance the word vector with prosodic information for the recurrent neural network based TTS system

Xin WANG, Shinji TAKAKI, Junichi YAMAGISHI

National Institute of Informatics, Japan

2016-09-11

CONTENTS

- Introduction
- Previous work
- Method of this work
- Experiments and results
- Conclusion

INTRODUCTION

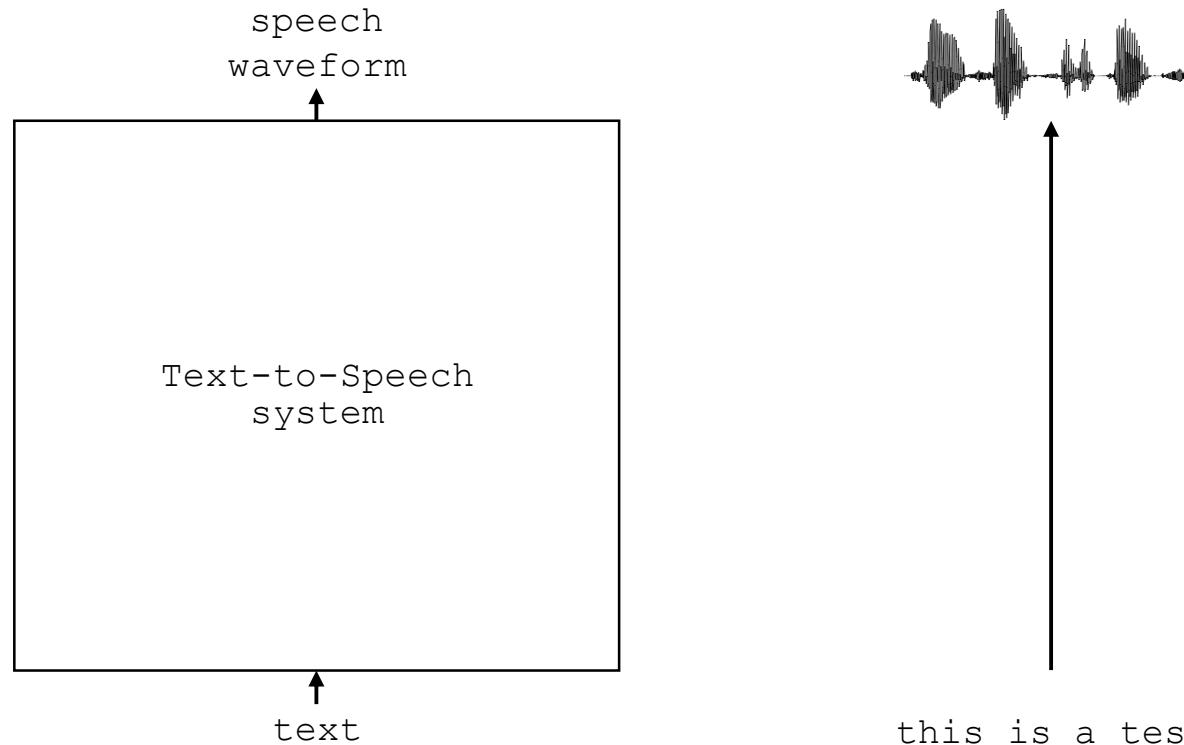
To avoid confusion

- "High Level Linguistic Features" ?
 - this work involves F0 trajectory, the surface string of word, and Tone and Break Indices (ToBI)
 - this work does NOT try to mine high level features (e.g. semantic)
- Prosody ?
 - this work use it to denote the super-segmental aspect of speech that is realized by the F0 trajectory

INTRODUCTION

Long-term goal

- End-to-End Text-to-Speech (TTS)



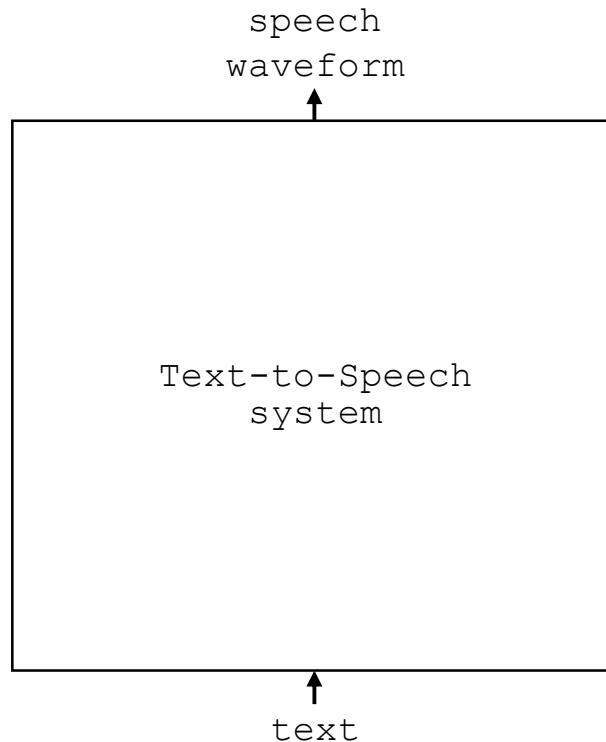
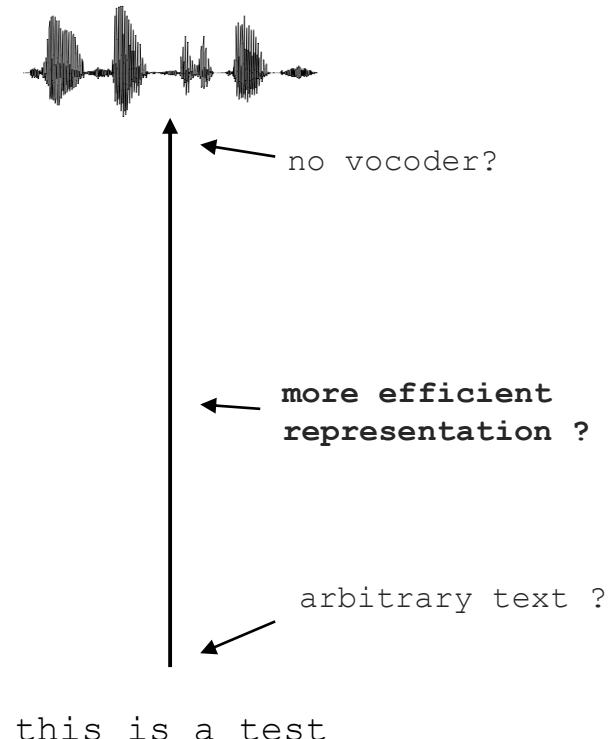
- *... creating a speech synthesizer for a new language or domain is too expensive, because current technology relies on **labelled data** and **human expertise**.^[1]*

[1] Simple4All, <http://simple4all.org>

INTRODUCTION

Long-term goal

- End-to-End Text-to-Speech (TTS)

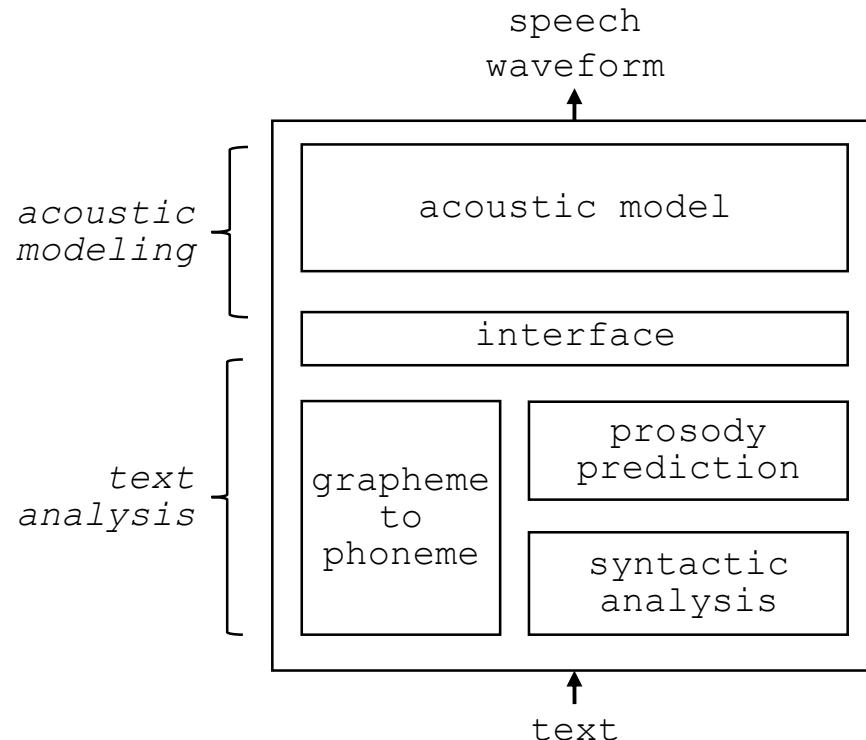
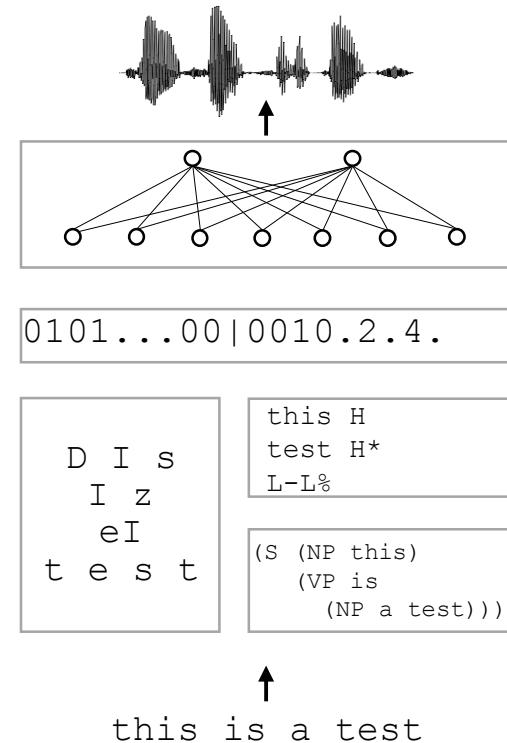


- efficient: less human expertise

INTRODUCTION

Starting point

- The common structure of TTS

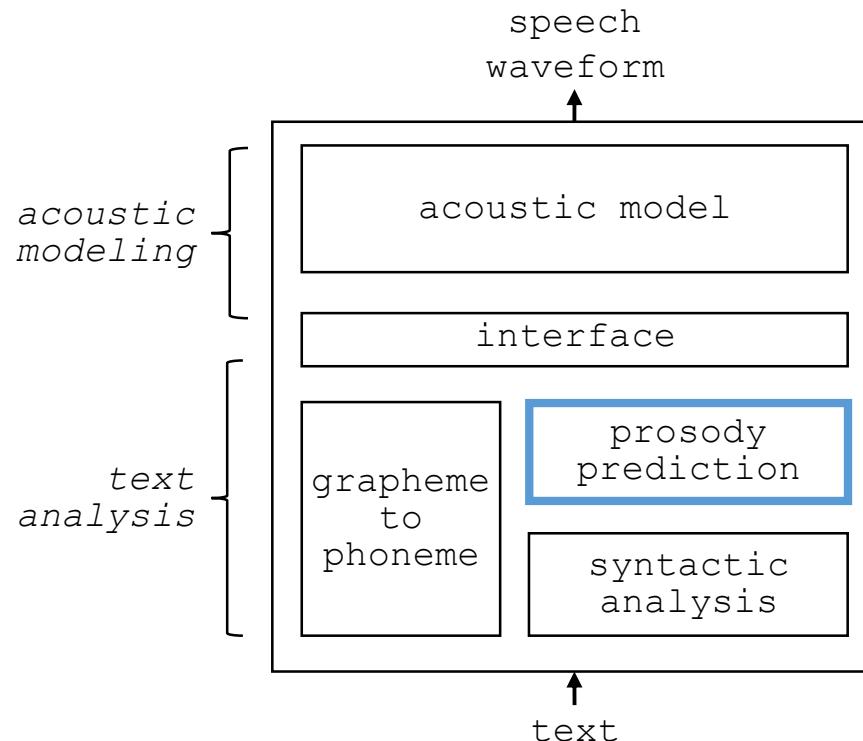
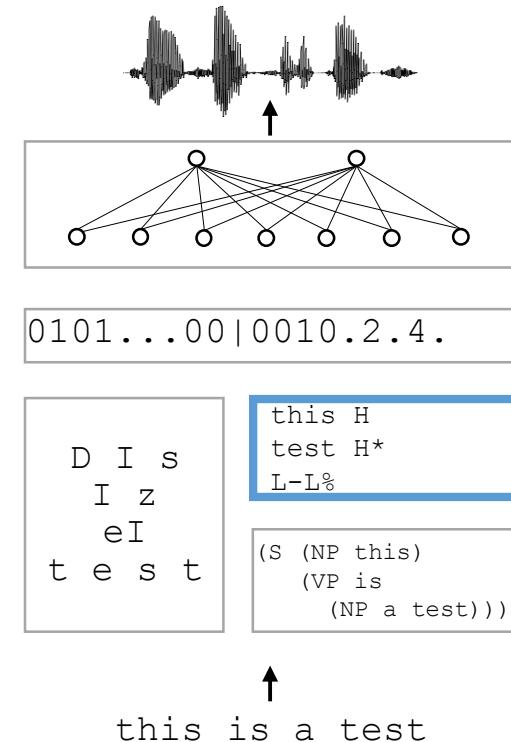


- front-end + back-end

INTRODUCTION

Question

- Efficient representation for prosody ?



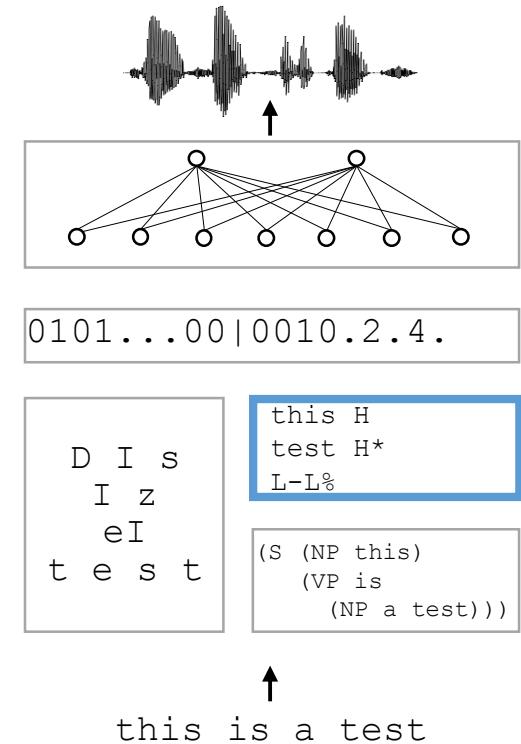
INTRODUCTION

Question

- Efficient representation for prosody ?

- ToBI [2] is a common choice
- a module to predict ToBI requires experts' annotation, which maybe 'expensive' on a larger corpus

- Alternatives ?
 - unsupervised approach (previous work)
 - 'semi-supervised' approach (this work)



[2] Silverman, et. al. (1992). ToBI: a standard for labeling English prosody. In *ICSLP* (Vol. 2, pp. 867–870).

[3] Wightman, Colin W. (2002): "ToBI or not toBI?", In *Speech Prosody*, 25-29.

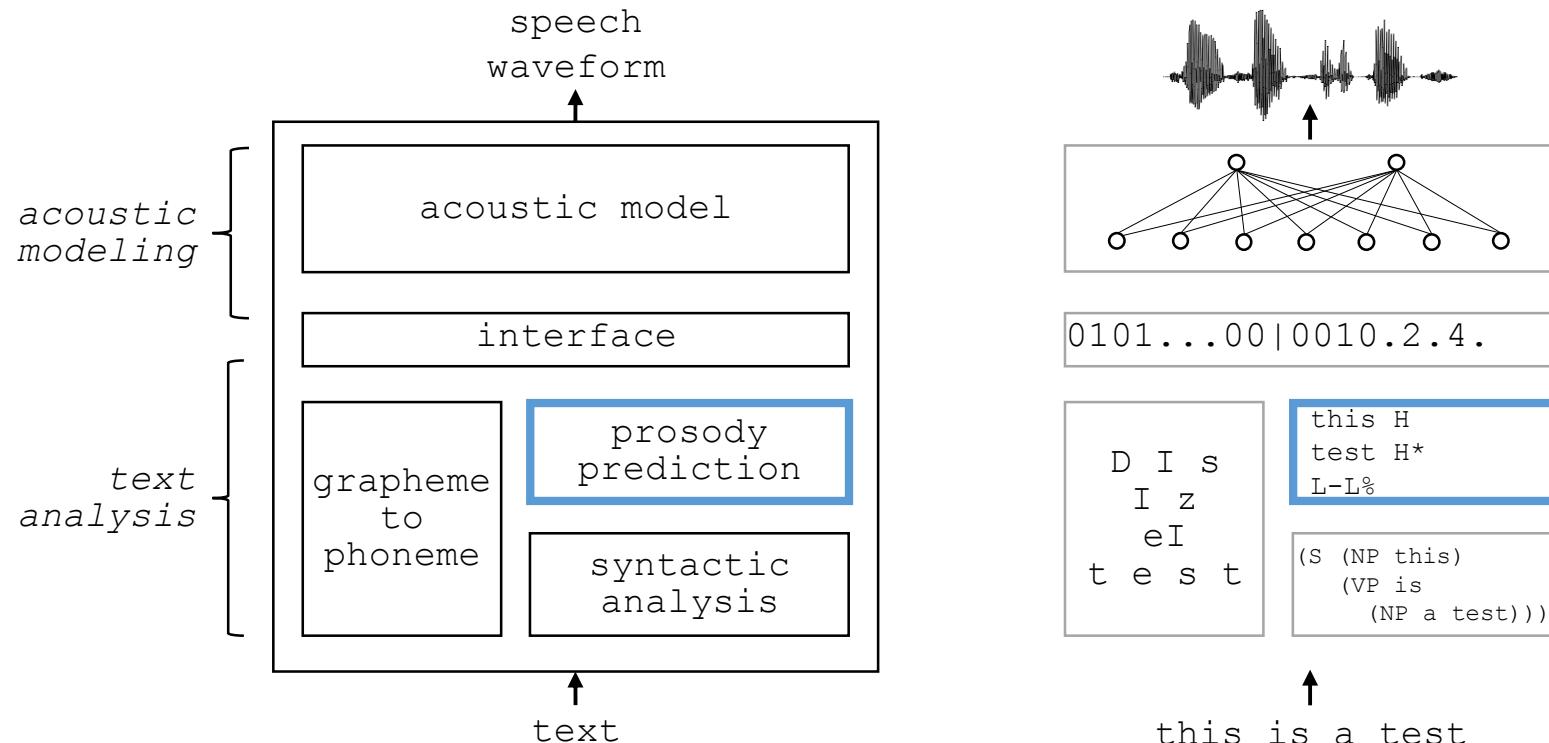
CONTENTS

- Introduction
- Previous work
- Method of this work
- Experiments and results
- Conclusion

PREVIOUS WORK

TTS with word vectors

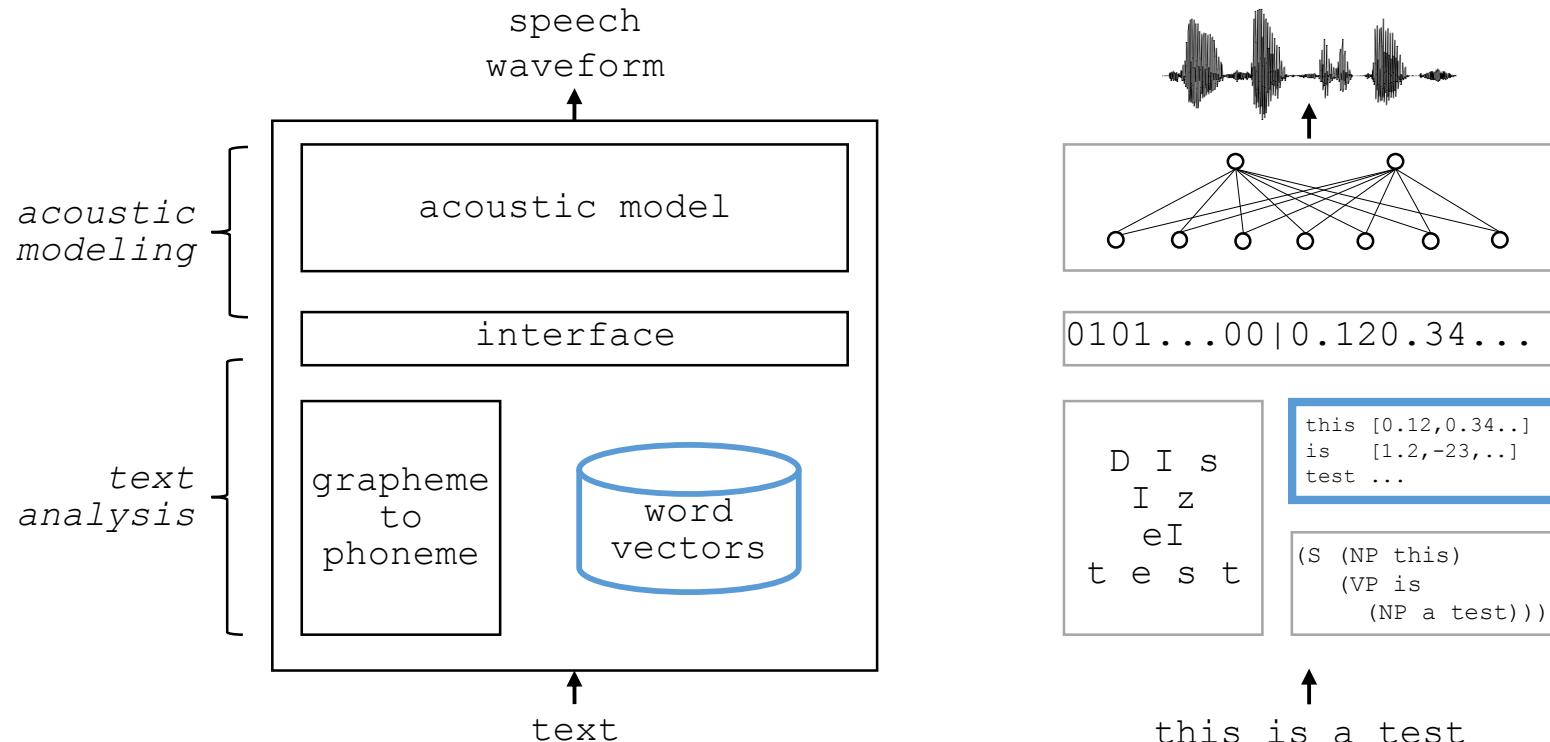
- Replace prosodic tags with word vectors



PREVIOUS WORK

TTS with word vectors

- Replace prosodic tags with word vectors [4]



- similar to the first work by another Wang [5]
- why word vectors [6]: **unsupervised** learning, linguistic regularity ...

[4] Wang, X., Takaki, S., & Yamagishi, J. (2016). Investigation of Using Continuous Representation of Various Linguistic Units in Neural Network based TTS. *IEICE*, Vol.E99-D, No.10.

[5] Wang, P., Qian, Y., Soong, F. K., He, L., & Zhao, H. (2015). Word embedding for recurrent neural network based TTS synthesis. In *ICASSP* (pp. 4879-4883).

[6] Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word representations. In *HLT-NAACL* (pp. 746-751).

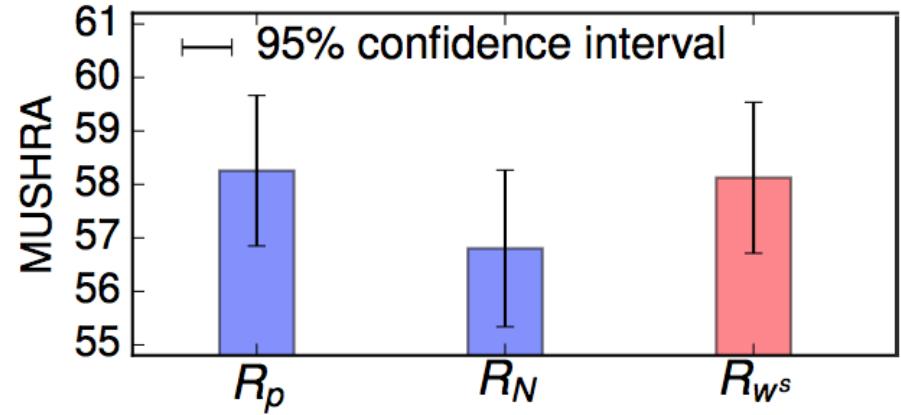
PREVIOUS WORK

TTS with word vectors

- Results of previous work [4]
 - Blizzard Challenge 2011, Nancy voice
 - Mushra test with 20 paired native speakers in CSTR

Tab1. Systems

ID	input to the acoustic model (a recurrent neural network)
R_p	phonemes + predicted prosodic tags
R_N	phonemes
R_{w^s}	phonemes + word vector



Further improvement ?

- unsupervised approach --> semi-supervised approach
 - raw word vectors --> enhanced vectors with TTS-related information

[4] Wang, X., Takaki, S., & Yamagishi, J. (2016). Investigation of Using Continuous Representation of Various Linguistic Units in Neural Network based Text-to-Speech Synthesis. *IEICE*, Vol.E99-D, No.10.

CONTENTS

- Introduction
- Previous work
- Method of this work
- Experiments and results
- Conclusion

METHOD

Motivation

- Any reason to enhance the word vector for a specific task ?
 - it is based on unsupervised learning,
and it only captures the topical similarity:

"coffee and cup are more 'similar' than car and train" [7]

and topical similarity may be insufficient for a specific task
 - e.g., predicting properties of concrete nouns [8]
 - ✓ taxonomic *a swan is an animal*
 - ✗ attributive *a swan is white*

[7] Hill, F. et.al. (2015). Simlex-999: Evaluating Semantic Models with Genuine Similarity Estimation. *Comput. Linguist.*, 41(4), 665–695. 14
[8] Rubinstein, D. et.al. (2015). How well do distributional models capture different types of semantic knowledge? *ACL* (pp. 726–730).

METHOD

Solution

- Enhance word vectors using task-specific information
 - a semantic tagging task: semantic lexicon [9]
 - a syntactic parsing task: syntactic context [10]
- For TTS: enhance the vectors with prosodic information
 - where can we find the prosodic information ?
 - how can we enhance the vectors ?

[9] Xu, C. et.al. (2014). RC-NET: A general framework for incorporating knowledge into word Representations. *CIKM* (pp. 1219–1228).

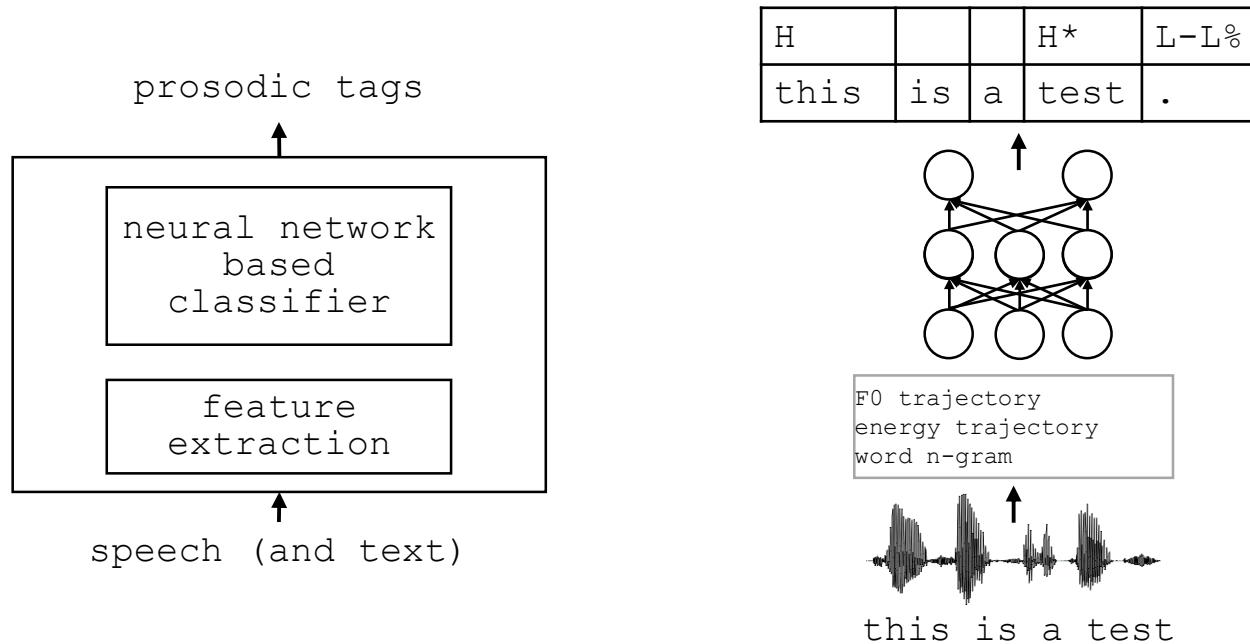
[10] Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. *ACL* (pp. 302–308).

METHOD

Enhance the word vector with prosodic information

- Where to find prosodic information ?

- an auxiliary task: automatic prosodic annotation [11]



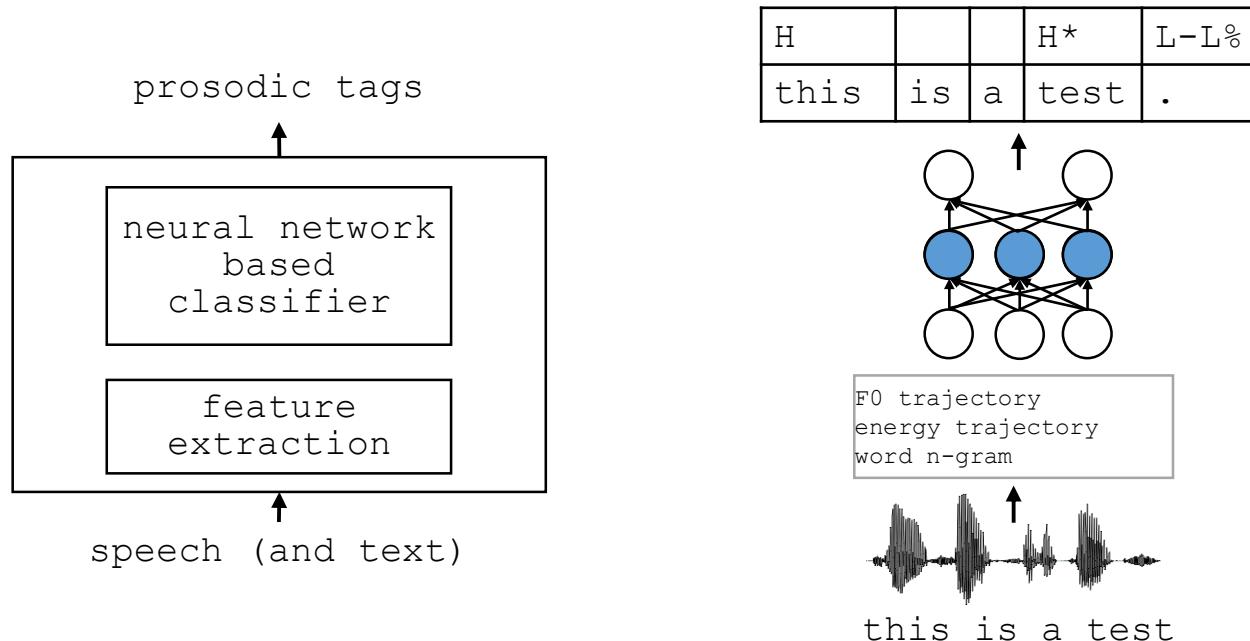
[11] Wightman, C. W., & Ostendorf, M. (1994). Automatic labeling of prosodic patterns. *IEEE Transactions on Speech and Audio Processing*, 2(4), 469–481.

METHOD

Enhance the word vector with prosodic information

- Where to find prosodic information ?

- an auxiliary task: automatic prosodic annotation



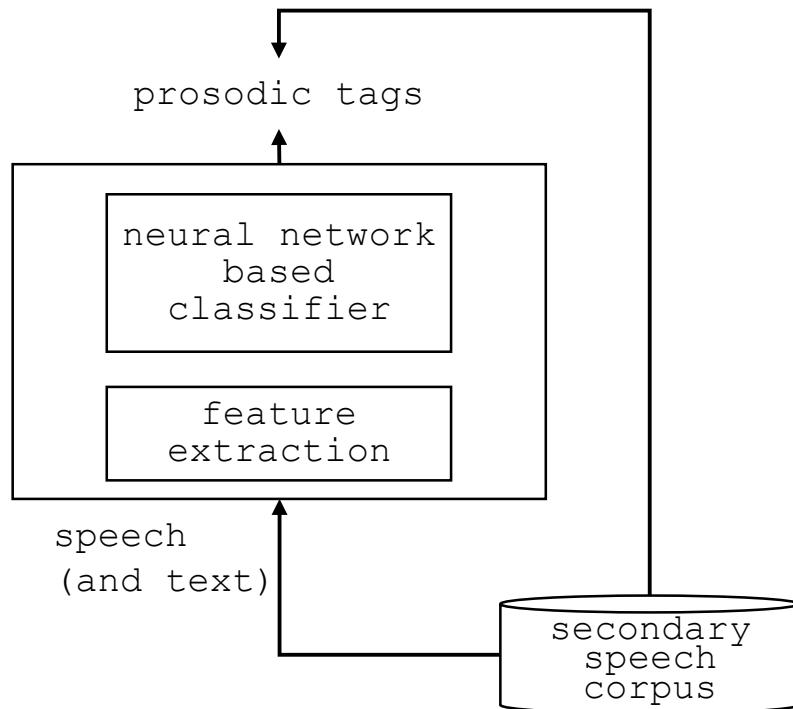
- the output of the hidden layer of a neural network prosodic annotator

METHOD

Enhance the word vector with prosodic information

- Where to find prosodic information ?

- an auxiliary task: automatic prosodic annotation

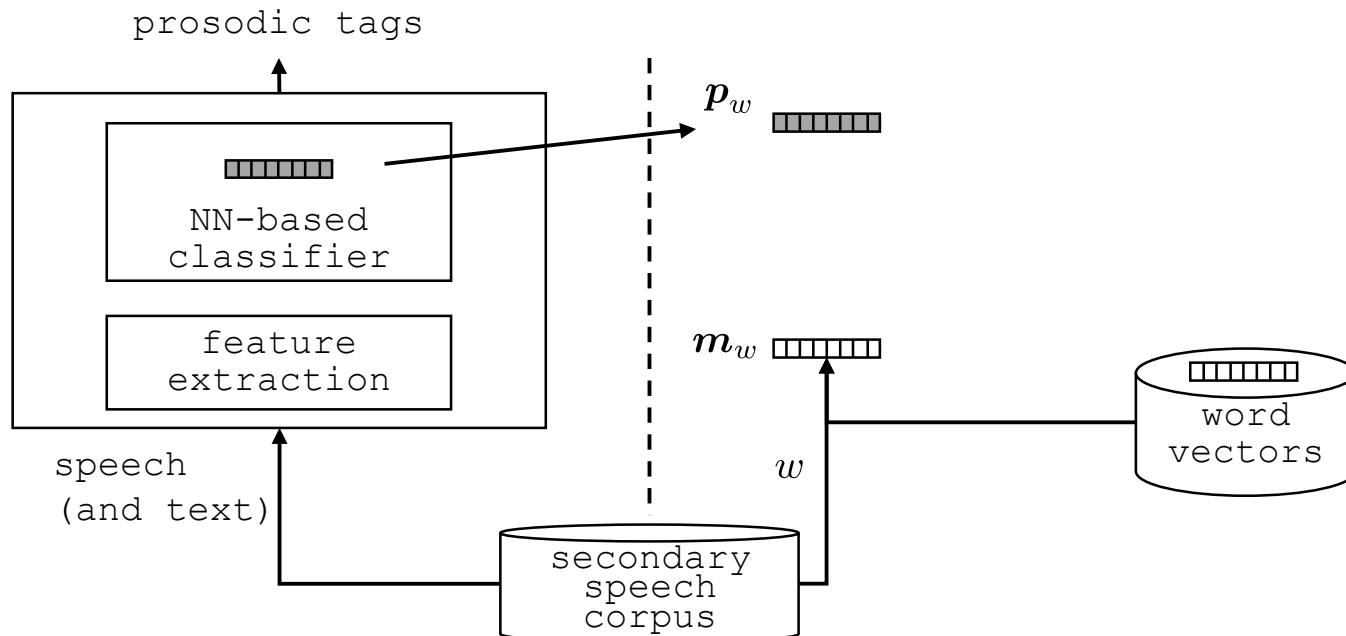


- secondary corpus [12]: small, yet with expert prosodic annotation

METHOD

Enhance the word vector with prosodic information

- How to enhance ?

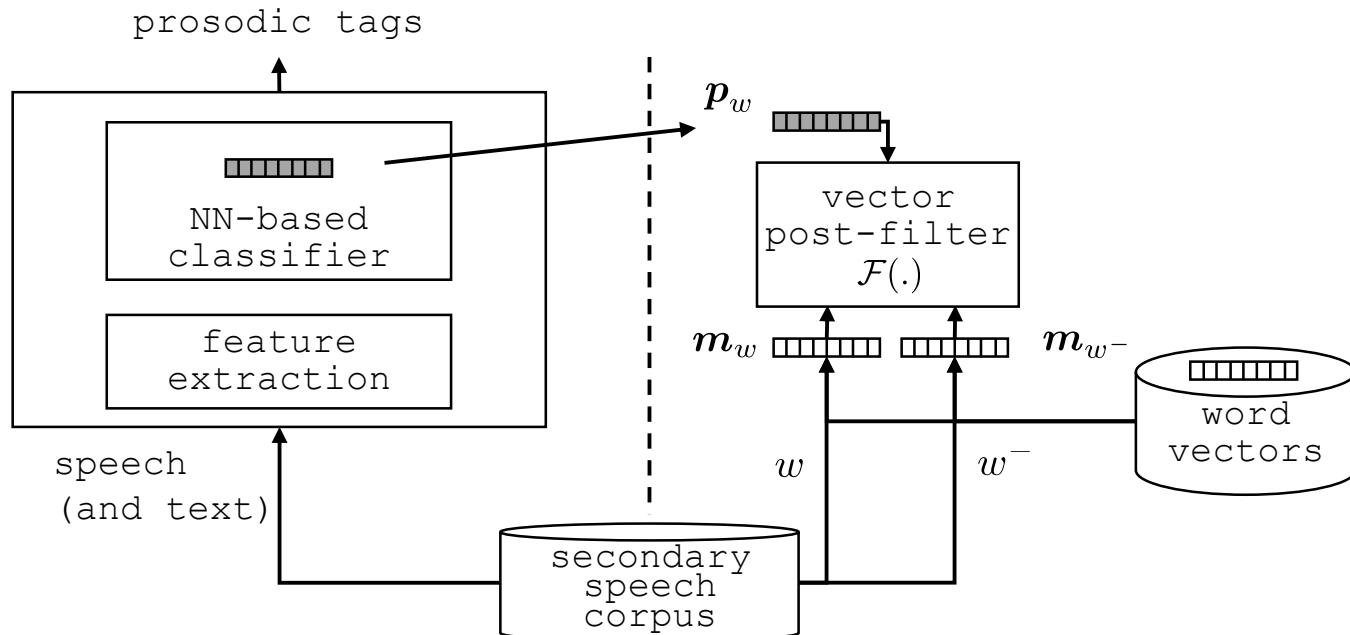


METHOD

Enhance the word vector with prosodic information

- How ? Train a post-filterer $\mathcal{F}(\cdot)$ with triplet-ranking loss criterion [12]

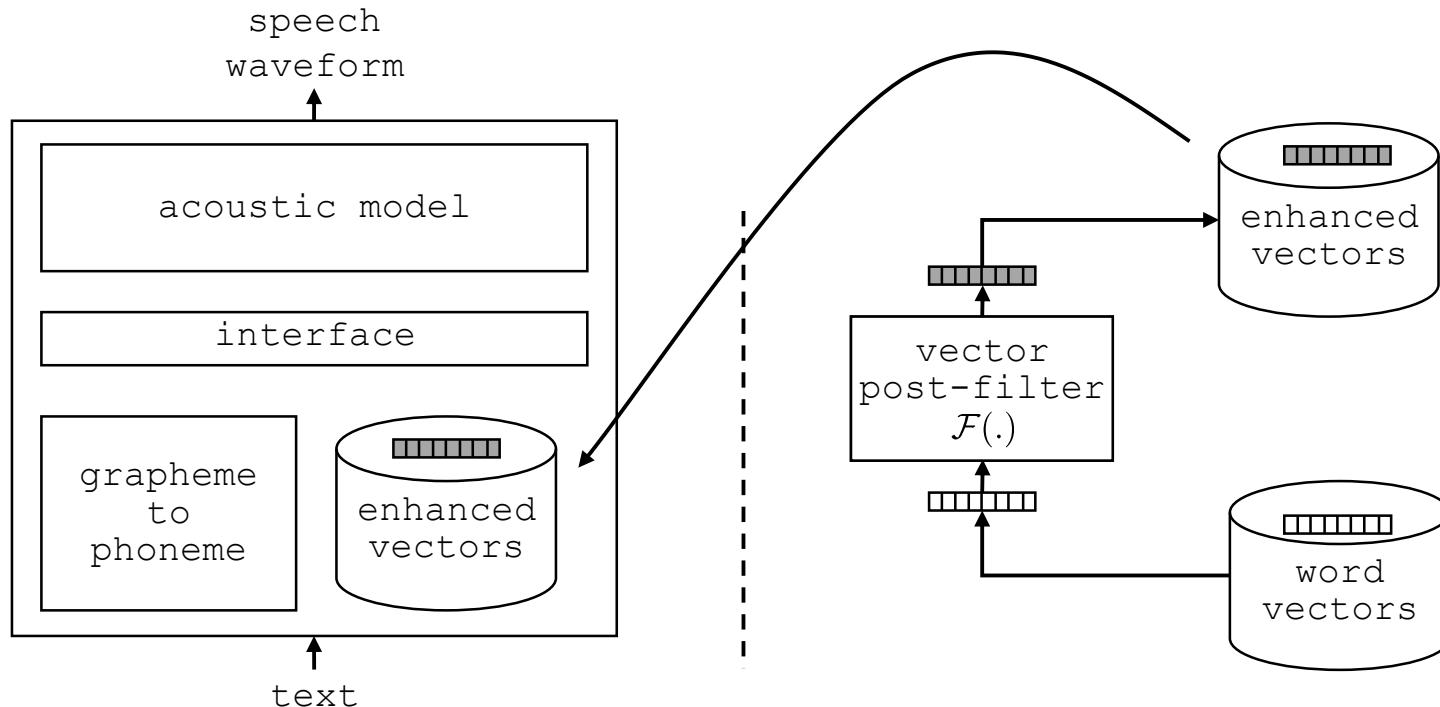
$$E = \max [0, 1 - \text{Sim}(\mathbf{p}_w, \mathcal{F}(\mathbf{m}_w)) + \text{Sim}(\mathbf{p}_w, \mathcal{F}(\mathbf{m}_{w^-}))]. \quad \text{Sim}(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \cdot \|\mathbf{y}\|}$$



METHOD

Enhance the word vector with prosodic information

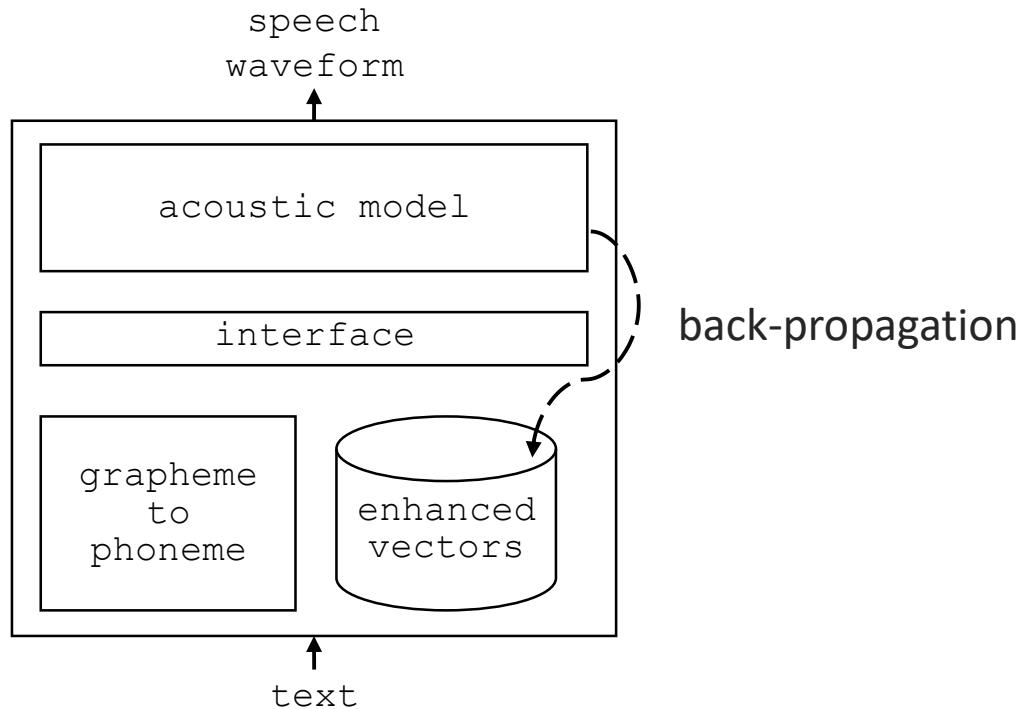
- Use enhanced vectors in TTS: a plug-in component



METHOD

Enhance the word vector with prosodic information

- Use enhanced vectors in TTS: fine-tune the vectors

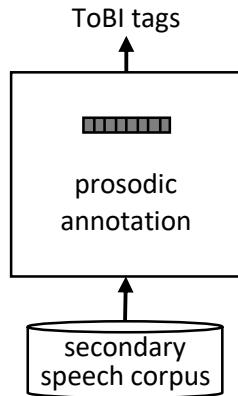


- fine-tune to enhanced vectors after training the acoustic model

METHOD

Enhance the word vector with prosodic information

- Sum up



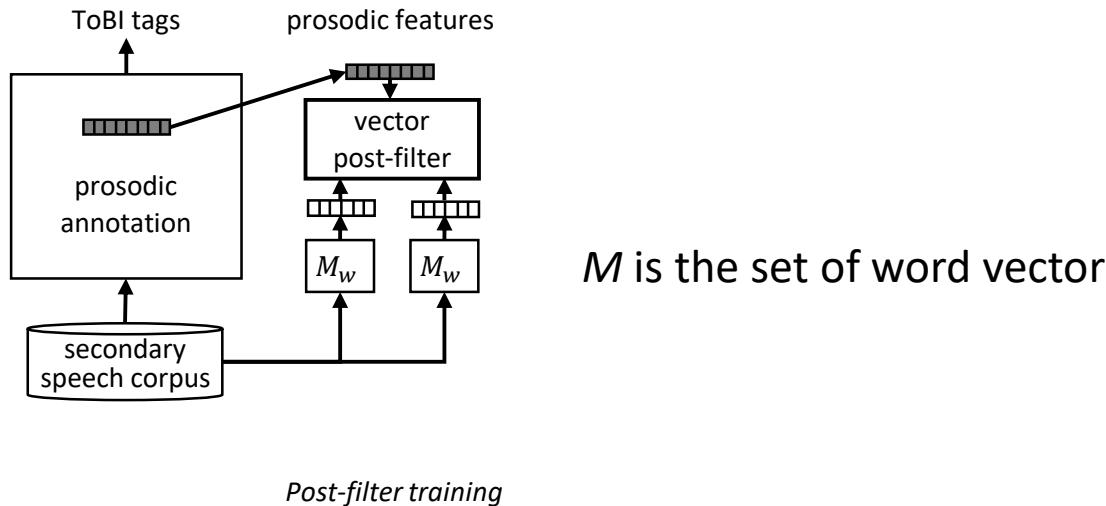
Post-filter training

- secondary corpus: small, with prosodic annotation

METHOD

Enhance the word vector with prosodic information

- Sum up

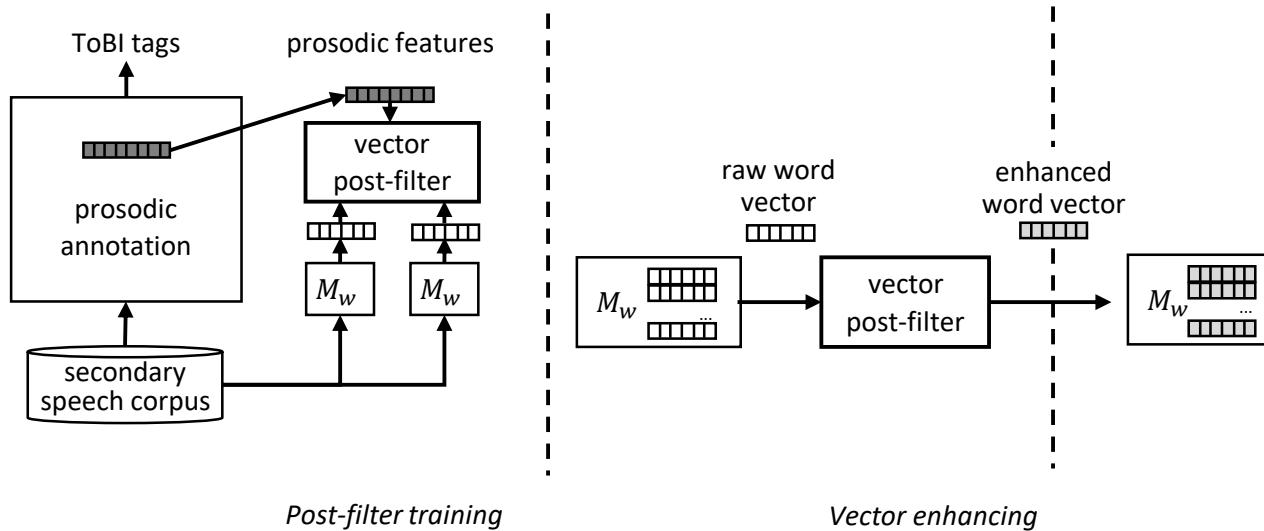


- secondary corpus: small, with prosodic annotation

METHOD

Enhance the word vector with prosodic information

- Sum up

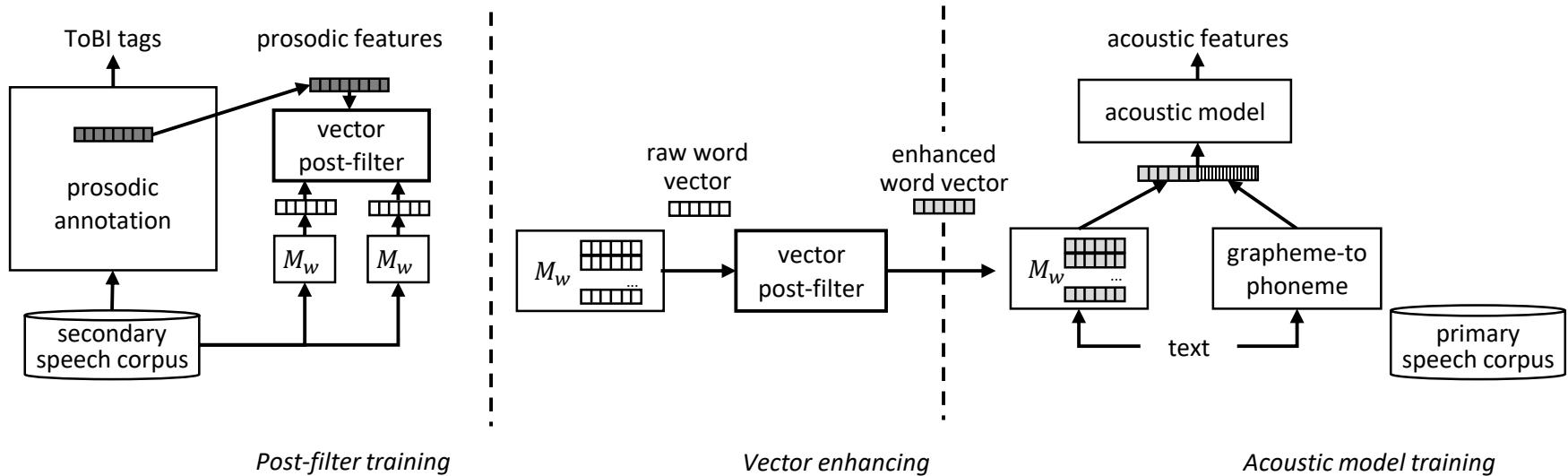


- secondary corpus: small, with prosodic annotation

METHOD

Enhance the word vector with prosodic information

- Sum up

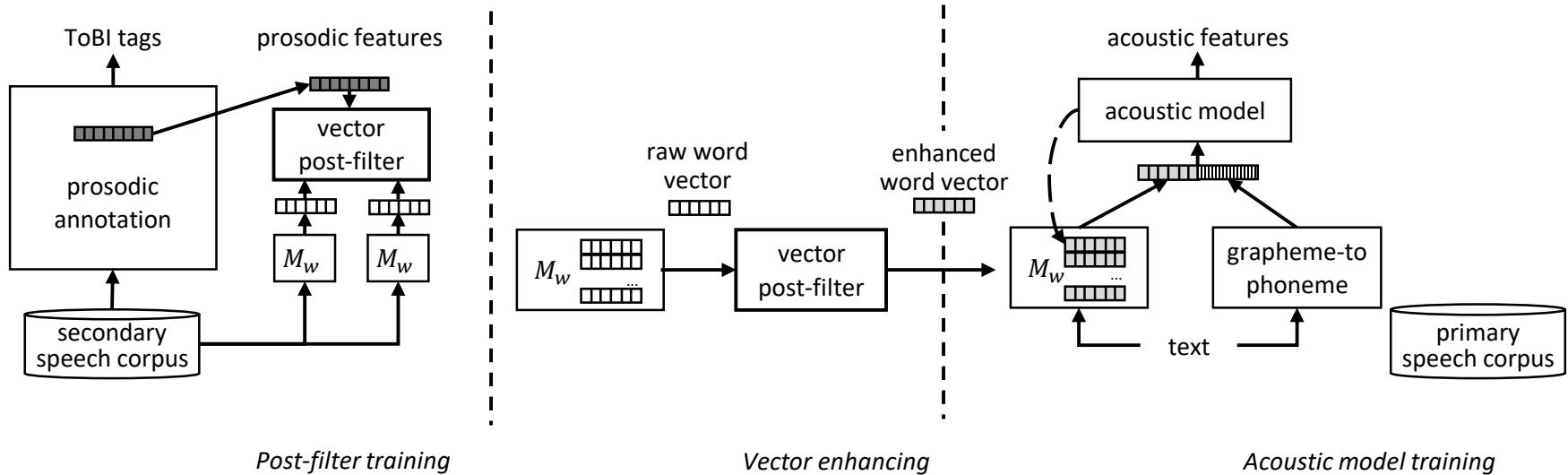


- secondary corpus: small, with expert prosodic annotation
- primary corpus: huge, w/o expert prosodic annotation

METHOD

Enhance the word vector with prosodic information

- Sum up



- secondary corpus: small, with expert prosodic annotation
- primary corpus: huge, w/o expert prosodic annotation

CONTENTS

- Introduction
- Previous work
- Method of this work
- Experiments and results
- Conclusion

EXPERIMENTS

Corpora and toolkit

- Primary corpus
 - 16 hours' recording of a female voice (BC2011, the Nancy voice [12])
- Secondary corpus
 - *f2b* set (< 1 hour) of Boston University Radio News Corpus [13]
- Raw word vectors
 - 80 dimensional vector (from RNN language model)
http://www.fit.vutbr.cz/~imikolov/rnnlm/word_projections-80.txt.gz
- Toolkits
 - Acoustic model: modified CURRENNT [14] <http://tonywangx.github.io>
 - Prosodic annotation model: Theano [15]

[12] King, S. & Karaikos, V., 2011. The Blizzard Challenge 2011.

[13] Ostendorf, M., Price, P. J., & Shattuck-Hufnagel, S. (1995). The Boston University radio news corpus. *Linguistic Data Consortium*.

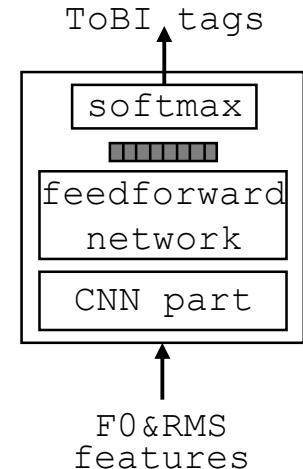
[14] Weninger, F., et. al. (2015). Introducing currennt: The munich open-source cuda recurrent neural network toolkit. *JMLR*, 16(1), 547–551.

[15] Bastien, F., et. al. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning Workshop

EXPERIMENTS

Automatic prosodic annotation model

- Input & target
 - input: wavelet representation of F0 (5 dim)^[15] + RMS per frame (1 dim)
 - target: H*, !H*, L*, bi-tonal accent, other^[16]
- Network structure
 - Convolutional neural network (CNN) part
 - 10 feature filters with size (5, 6)
 - max pooling stride (10, 1)
 - Feedforward network
 - 3 hidden layers with layer size 500 * 320 * 80
- Results on a binary annotation task (i.e. the word is accent or not)
 f_1 score: 0.882



[15] Suni, A. S., Aalto, D., Raitio, T., Alku, P., & Vainio, M. (2013). Wavelets for intonation modeling in HMM speech synthesis. SSW8, (pp 285-290).

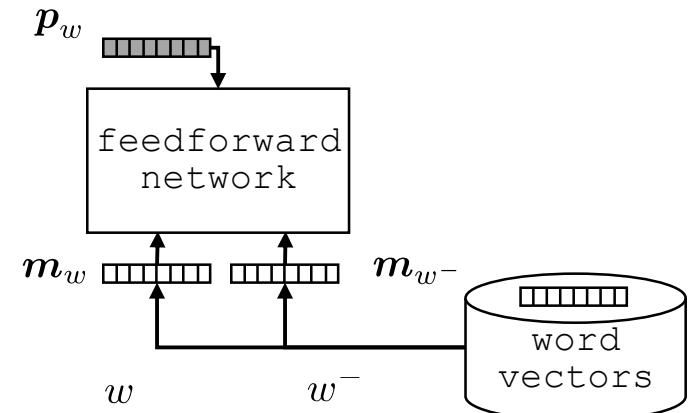
[16] Black, A. W., & Hunt, A. J. (1996). Generating F0 contours from ToBI labels using linear regression. ICSLP (pp. 1385–1388)

EXPERIMENTS

Vector poster-filter

- Model structure

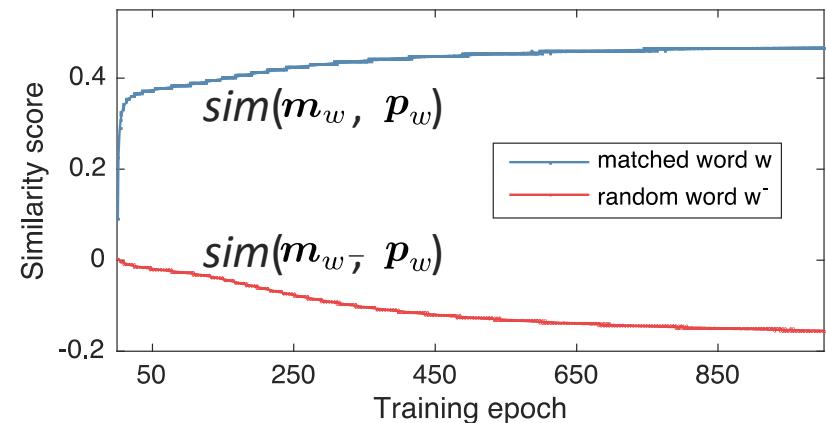
- 4 hidden layers with layer size:
 $80 * 160 * 160 * 80$



- Results

- similarity between target vector and input vector

$$Sim(x, y) = \frac{x \cdot y}{\|x\| \cdot \|y\|}$$



EXPERIMENTS

F0 generation in TTS

- Experimental systems

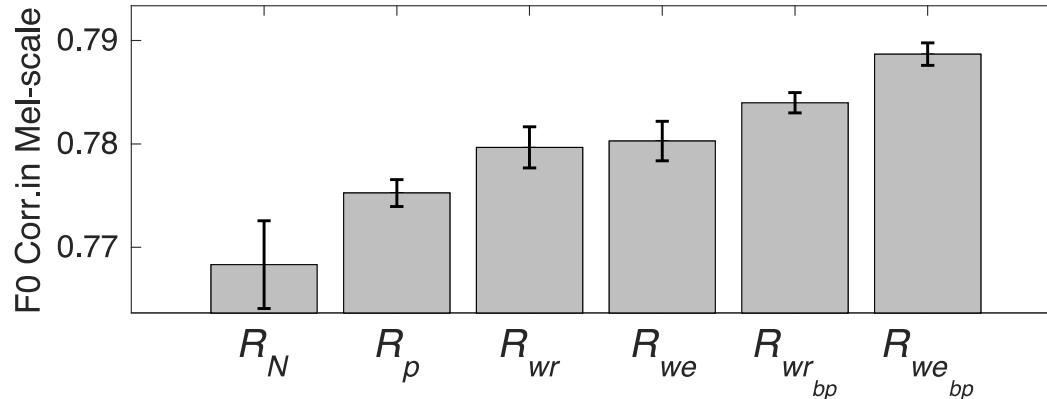
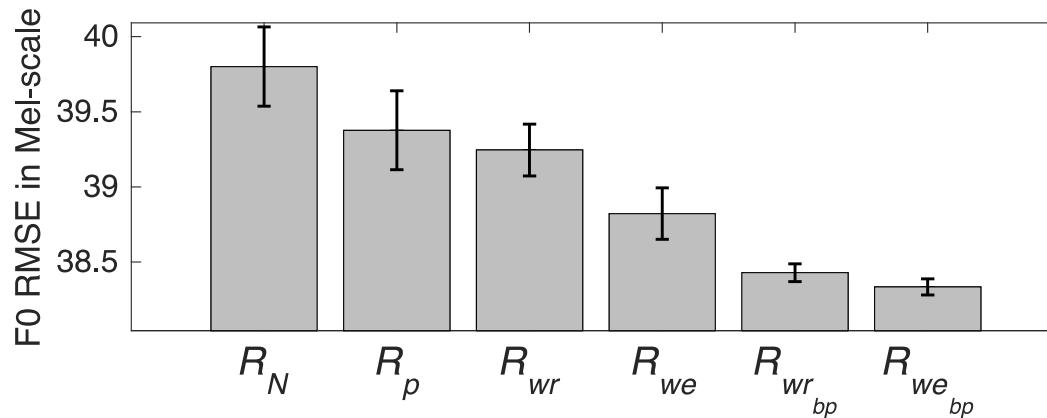
system ID	input to the acoustic model (F0 trajectory model)
R_N	phonemes
R_p	phonemes + conventional prosodic context (automatically predicted)
R_{wr}	phonemes + raw word vector
R_{we}	phonemes + enhanced word vector
$R_{wr_{bp}}$	phonemes + raw word vector tuned by back-propagation in TTS
$R_{we_{bp}}$	phonemes + enhanced word vector tuned by back-propagation in TTS

- all systems use another acoustic model to predict spectral features

EXPERIMENTS

Results

- Objective test



R_N	only phoneme
R_p	+ prosodic context

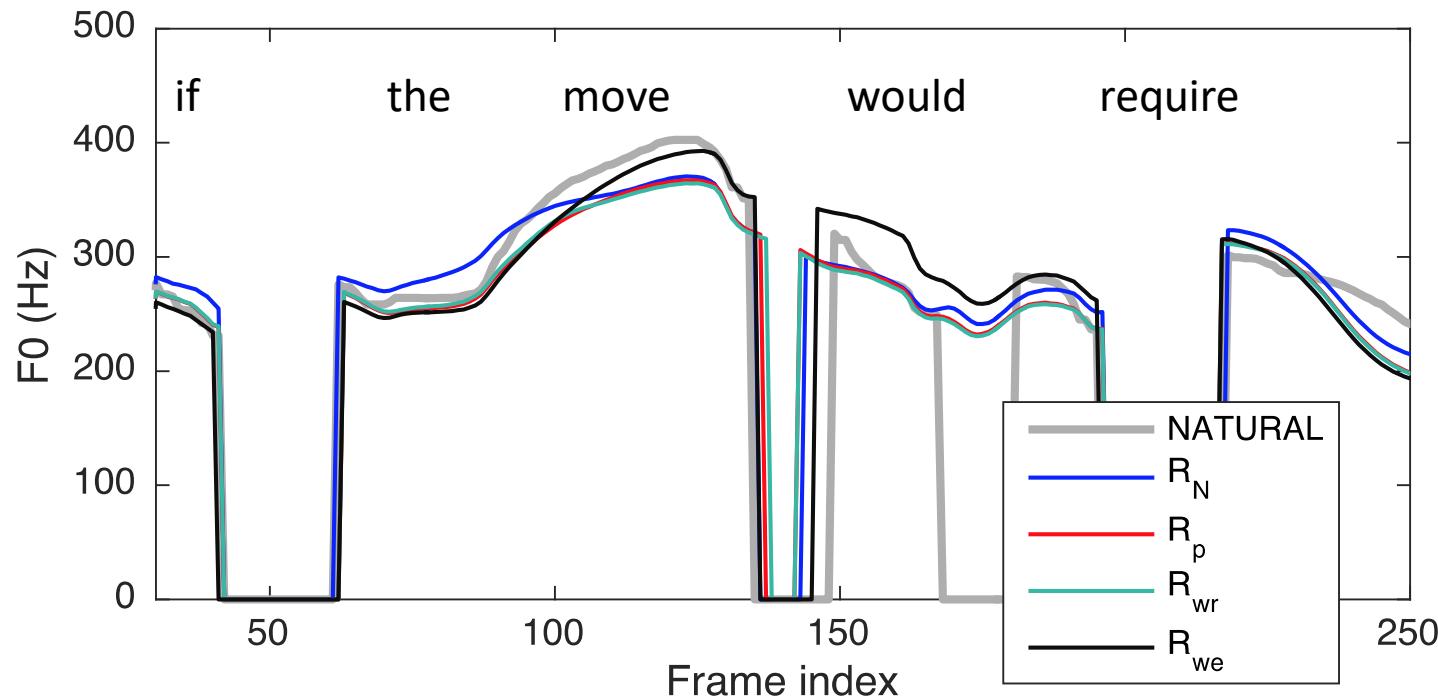
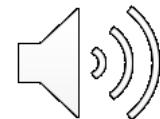
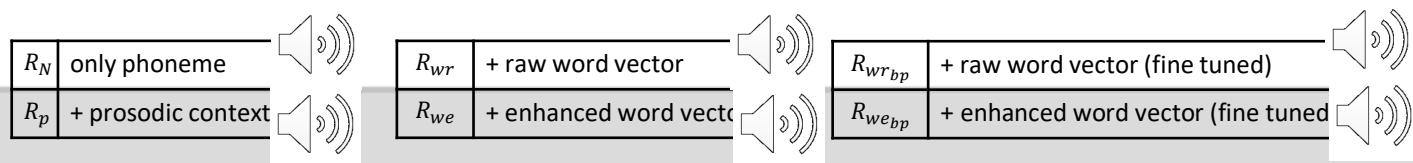
R_{wr}	+ raw word vector
R_{we}	+ enhanced word vector

$R_{wr_{bp}}$	+ raw word vector (fine tuned)
$R_{we_{bp}}$	+ enhanced word vector (fine tuned)

EXPERIMENTS

Results

- Sample

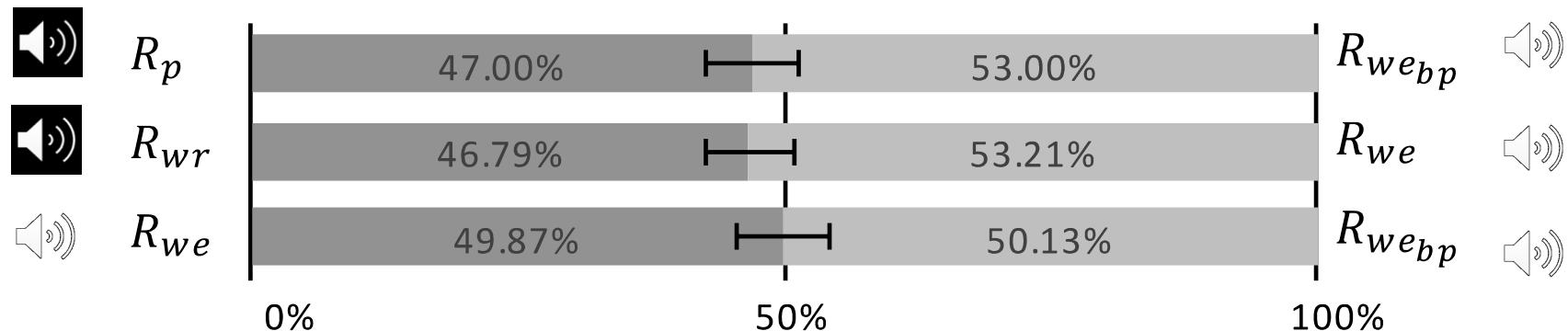


EXPERIMENTS

Results

● Subjective test

- conducted in CSTR, by 20 paid native speakers



R_N	only phoneme
R_p	+ prosodic context

R_{wr}	+ raw word vector
R_{we}	+ enhanced word vector

$R_{wr_{bp}}$	+ raw word vector (fine tuned)
$R_{we_{bp}}$	+ enhanced word vector (fine tuned)

- some evaluators favor R_{we} very much while others favor R_{wr} very much, because of missing the context of sentence ?
- more samples: <http://tonywangx.github.io>
https://www.dropbox.com/s/u1hxvqbpl5uj1r4/WE_0301_x01.tar.gz?dl=0

CONCLUSION

● Methods

- enhance raw word vectors using prosodic features
 - prosodic features extracted from an prosodic annotation model
 - vector post-filter for enhancing raw vectors

● Results

- improves the objective measure on F0 modelling
- no significant improvement on perception

● Future work

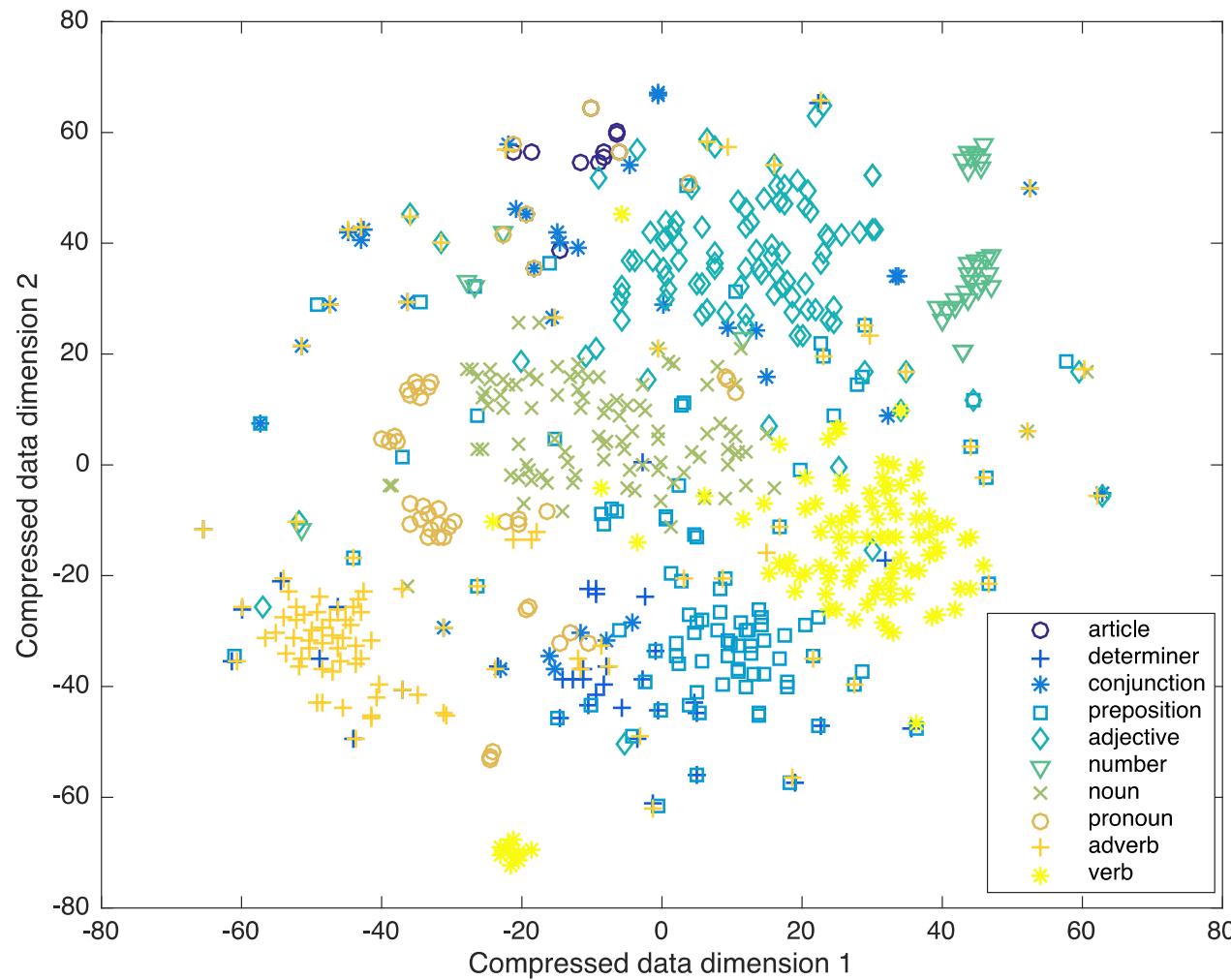
- alterative to modelling F0 trajectory at the frame level ?
- annotation on the sub-set of primary corpus ?
- use high level features (e.g., theme and rheme ?)

Thank you for your attention

Q & A

● Visualizing the word vectors using t -SNE [16]

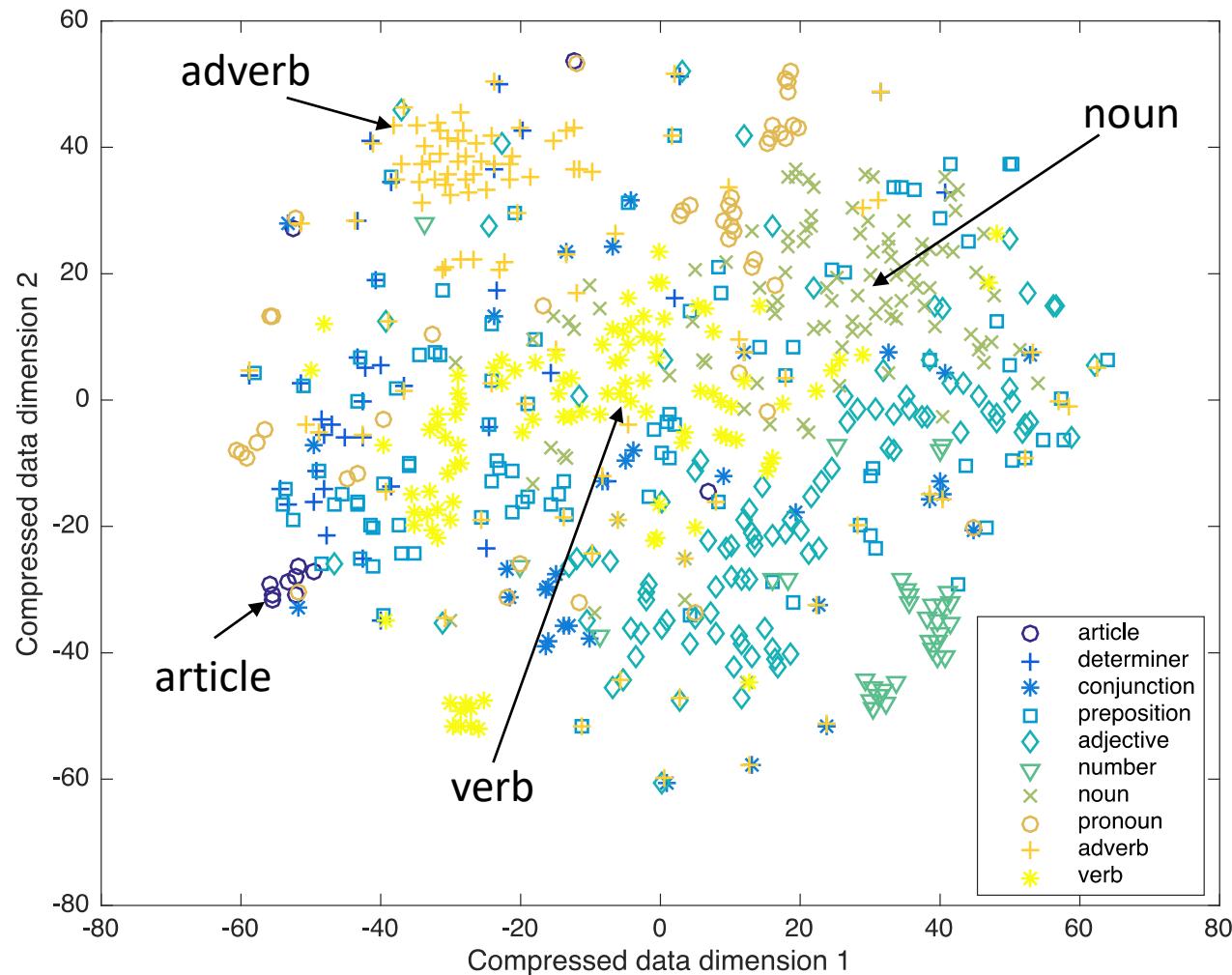
original word vectors http://www.fit.vutbr.cz/~imikolov/rnnlm/word_projections-80.txt.gz



[16] Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. *Journal of Machine Learning Research*, 9(Nov), 2579–2605.
<https://lvdmaaten.github.io/tsne/>

● Visualizing the word vectors using t -SNE [16]

word vectors after prosodic enhancement



[16] Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t -SNE. *Journal of Machine Learning Research*, 9(Nov), 2579–2605.
<https://lvdmaaten.github.io/tsne/>

EXPERIMENTS

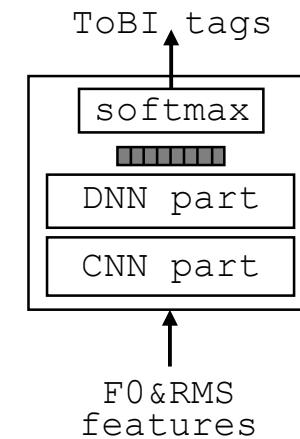
Prosodic annotation model

Task

- predict a ToBI tag for each word
- input:
 - wavelet representation of F0 (5 dim)
 - RMS per frame (1 dim)
 - zero-padding to 160 frames/word
- target: H*, !H*, L*, bitonal-accent, others

Model structure

- Convolutional neural network
 - 10 feature filters with size (5, 6)
 - max pooling stride (10, 1)
- feedforward neural network
 - $500 * 320 * 80$



PREVIOUS WORK

TTS with word vectors

- word vectors

	one-hot vector	word vector
cat	$[0, 0, 0, \dots, 0, 1, 0, \dots, 0] \in \mathbf{R}^{ V }$	$[0.0023, \dots, 0.0054\dots] \in \mathbf{R}^D$
dog	$[0, 0, 0, 1, \dots, 0, 0, \dots, 0] \in \mathbf{R}^{ V }$	$[0.0013, \dots, 0.0033\dots] \in \mathbf{R}^D$

- Advantages

- linguistic regularity
- low dimension (D is smaller than the size of dictionary $|V|$)
- unsupervised** learning based on plain text