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INTRODUCTION

To avoid confusion
® "High Level Linguistic Features" ?

= this work involves FO trajectory, the surface string of word, and
Tone and Break Indices (ToBlI)
= this work does NOT try to mine high level features (e.g. semantic)

® Prosody ?

= this work use it to denote the super-segmental aspect of speech
that is realized by the FO trajectory



INTRODUCTION

Long-term goal
® End-to-End Text-to-Speech (TTS)

speech
waveform

*

-

Text-to-Speech

system
f
text this i1is a test
= ... creating a speech synthesizer for a new language or domain is too

expensive, because current technology relies on labelled data and

human expertise. 1]
[1] Simple®All, http://simple4all.org 4



INTRODUCTION

Long-term goal
® End-to-End Text-to-Speech (TTS)

speech
waveform

*

no vocoder?

Text-to-Speech

system <« Mmore efficient

representation ?

arbitrary text ?

‘///

f

text this is a test

= efficient: less human expertise



INTRODUCTION

Starting point
® The common structure of TTS

speech
waveform W*
! t
acoustic acoustic model m
modeling 7]
interface 0101...0010010.2.4.
prosody .- EZ;i i*
text | grapheme prediction X S Lo
analysis to eIZ
phoneme syntactic test||® o e
analysis (NP a test)))
f t
text this is a test

= front-end + back-end



Question

® Efficient representation for prosody ?

INTRODUCTION

speech
waveform

*

acoustic
modeling

acoustic model

bbb
A

0101...0010010.2.4.

interface
prosody
text | grapheme prediction
analysis to

phoneme syntactic

analysis

f
text

this H
DI s test H*
I 7 L-1L%
e:[ (S (NP this)
1
t e s t (VP is
(NP a test)))

this is a test



INTRODUCTION

Question
® Efficient representation for prosody ?

= ToBI [?is a3 common choice

b
() a module to predict ToBI requires
experts' annotation, which maybe m
‘expensive’ on a larger corpus
0101...00]0010.2.4.

= Alternatives ? ‘this =

. . DI s test H*
» unsupervised approach (previous work) I 112
» 'semi-supervised' approach (this work) el (5 (NP this)

S
t e s t (VP is
(NP a test)))

?

this is a test

[2] Silverman, et. al. (1992). ToBI: a standard for labeling English prosody. In ICSLP (Vol. 2, pp. 867-870).
[3] Wightman, Colin W. (2002): "ToBI or not toBI?", In Speech Prosody, 25-29.
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acoustic
modeling

text
analysis

PREVIOUS WORK

TTS with word vectors
® Replace prosodic tags with word vectors

speech
waveform

*

acoustic model

interface

prosody

grapheme prediction
to

phoneme syntactic

analysis

f
text

bbb
A

0101...0010010.2.4.

this H
DI s test H*
I 7 L-1L%
e:[ (S (NP this)
1
t e s t (VP is
(NP a test)))

this is a test
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PREVIOUS WORK

TTS with word vectors
® Replace prosodic tags with word vectors
waveform

M m " _W*
t t
acoustic acoustic model jggj§§%§§§i§;i
modeling—

speech

interface 0101...00]10.120.34...

this [0.12,0.34..]

is [1.2,-23,..1]
text B grapheme DII S test ...

analysis to word f
phoneme vectors < (S (NP this)

t e s t (VP is

(NP a test)))

; t

text this is a test

= similar to the first work by another Wang [°!
= why word vectors [®: unsupervised learning, linguistic regularity ...
[4] Wang, X., Takaki, S., & Yamagishi, J. (2016). Investigation of Using Continuous Representation of Various Linguistic Units in Neural Network based TTS. /EICE, Vol.E99-D,No.10.

[5] Wang, P., Qian, Y., Soong, F. K., He, L., & Zhao, H. (2015). Word embedding for recurrent neural network based TTS synthesis. In ICASSP (pp. 4879-4883).
[6] Mikolov, T., Yih, W., & Zweig, G. (2013). Linguistic regularities in continuous space word representations. In HLT-NAACL (pp. 746-751).



PREVIOUS WORK

TTS with word vectors
® Results of previous work

= Blizzard Challenge 2011, Nancy voice
" Mushra test with 20 paird native speakers in CSTR

1 - 1 . T . T
Tab1l. Systems 20 — 95% confidence interval
ID input to the acoustic model < 59| { [
(a recurrent neural network) I 581
: : 2
R, phonemes + predicted prosodic tags 2 57 1 J
Ry | phonemes = 56} l
R,,s |phonemes + word vector 55L X ! .

Further improvement ?

® unsupervised approach --> semi-supervised approach
raw word vectors --> enhanced vectors with TTS-related information

[4] Wang, X., Takaki, S., & Yamagishi, J. (2016). Investigation of Using Continuous Representation of Various Linguistic Units in 12
Neural Network based Text-to-Speech Synthesis. IEICE, VVol.E99-D,No.10.
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METHOD

Motivation
® Any reason to enhance the word vector for a specific task ?

= jtis based on unsupervised learning,
and it only captures the topical similarity:

"coffee and cup are more ‘similar’ than car and train" ]

and topical similarity may be insufficient for a specific task
- e.g., predicting properties of concrete nouns (8]

v taxonomic a swan is an animal

X attributive a swan is white

[7] Hill, F. et.al. (2015). Simlex-999: Evaluating Semantic Models with Genuine Similarity Estimation. Comput. Linguist., 41(4), 665—695. 14

[8] Rubinstein, D. et.al. (2015). How well do distributional models capture different types of semantic knowledge? ACL (pp. 726—730).



METHOD

Solution
® Enhance word vectors using task-specific information

= asemantic tagging task: semantic lexicon °!
= a syntactic parsing task: syntactic context [1°]

® For TTS: enhance the vectors with prosodic information

= where can we find the prosodic information ?
= how can we enhance the vectors ?

[9] Xu, C. et.al. (2014). RC-NET: A general framework for incorporating knowledge into word Representations. CIKM (pp. 1219-1228).
[10] Levy, O., & Goldberg, Y. (2014). Dependency-Based Word Embeddings. ACL (pp. 302—-308).



METHOD

Enhance the word vector with prosodic information
® Where to find prosodic information ?

= an auxiliary task: automatic prosodic annotation 1]

H H* L-1L%
prosodic tags this |is|a [test
neural network

based
classifier
feature FO trajectory
' energy trajectory
extraction word n-gram

f t
speech (and text) *ww‘,

this is a test

[11] Wightman, C. W., & Ostendorf, M. (1994). Automatic labeling of prosodic patterns. IEEE Transactions on 16
Speech and Audio Processing, 2(4), 469-481.



METHOD

Enhance the word vector with prosodic information
® Where to find prosodic information ?

= an auxiliary task: automatic prosodic annotation

H H* L-1%
prosodic tags this |is|a |[test|.

: t

neural network
based
classifier

feature FO trajectory

' energy trajectory
extraction word n-gram

f t
speech (and text) *ww‘,

this is a test

= the output of the hidden layer of a neural network prosodic annotator

17



METHOD

Enhance the word vector with prosodic information
® Where to find prosodic information ?

= an auxiliary task: automatic prosodic annotation

;

prosodic tags

f

neural network
based
classifier

feature
extraction

A
speech

(and text)

| secondary
speech

| corpus

= secondary corpus [12I; small, yet with expert prosodic annotation

[12] Watts, O. (2012). Unsupervised Learning for Text-to-Speech Synthesis. University of Edinburgh. 18



METHOD

Enhance the word vector with prosodic information
® How to enhance ?

prosodic tags

f

I
I p—
[T /_/__/,:—-»
I
NN-based |
classifier :
I
feature : ™My, DI
extraction " 1
I word
A 1
speech | W vectors
(and text) :

r:%econdary
speech
| corpus




METHOD

Enhance the word vector with prosodic information
® How ? Train a post-filterer F(.) with triplet-ranking loss criterion [12!

E = max [Ov 1 = Sim(p,,, F(my)) + Sim(pwvf(mw_))]' Sim(x,y) = ||:13|w| ﬁyH

prosodic tags

f

1
P
[T /‘/—/’:"
| vector
TN—biiidr : post-filter
class e | .F()
1 A A
feature ' my, mm [ENEN
} 1 A A
extraction 1
I word
A 1
spesch ; w w vectors
(and text) !
| secondary |
speech
| corpus |

[12] Bengio, S., & Heigold, G. (2014). Word embeddings for speech recognition. In INTERSPEECH-2014 (pp. 1053—1057).



METHOD

Enhance the word vector with prosodic information
® Use enhanced vectors in TTS: a plug-in component

speech
waveform

*

acoustic model

interface

CE
grapheme
to enhanced
phoneme vectors

IT1T]

vector
post-filter

()

A
1T

A

enhanced

vectors

21



METHOD

Enhance the word vector with prosodic information
® Use enhanced vectors in TTS: fine-tune the vectors

speech
waveform

*

acoustic model

\

; I back- :

interface % ack-propagation
grapheme

to enhanced
phoneme vectors
f
text

= fine-tune to enhanced vectors after training the acoustic model



Enhance the word vector with prosodic information

® Sumup

ToBI tags

f

prosodic
annotation

*
secondary
speech corpus

Post-filter training

= secondary corpus:

METHOD

small, with prosodic annotation

23



METHOD
Enhance the word vector with prosodic information

® Sumup
ToBlI tags prosodic features
f L
_/ vector
post-filter
prosodic 3 Y
annotation A:III FII
My | | My M is the set of word vector

)

secondary
speech corpus

A A

Post-filter training

= secondary corpus: small, with prosodic annotation



METHOD
Enhance the word vector with prosodic information

® Sumup
1 1
ToBlI tags prosodic features | 1
1 1
t o ! ;
1 1
o | vector " .
post-filter 1 raw word enhanced
prosodic ijI 3 1 vector word vector
annotation ; (101 : L ml
M, M,, Uy HHH ,|  vector I y HHHH
* 7'y 7'y : Y o post-filter : o
secondary 1 1
speech corpus : :
! :
Post-filter training Vector enhancing

= secondary corpus: small, with prosodic annotation



® Sumup

ToBI tags

f

_/

prosodic
annotation

)

secondary
speech corpus

= secondary corpus:
= primary corpus:

prosodic features

Pt 2

vector
post-filter

A A
Sl
M, | |M,

A A

Post-filter training

METHOD
Enhance the word vector with prosodic information

raw word
vector
[NNENEN]

enhanced

word vector
(nnnnnn|

acoustic features

acoustic model

=R

vector
| post-filter

,, EEEH

1
1
—T>

.

w

0111

Vector enhancing

grapheme-to
phoneme

text —T

primary
speech corpus

Acoustic model training

small, with expert prosodic annotation
huge, w/o expert prosodic annotation
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® Sumup

ToBI tags

f

_/

prosodic
annotation

)

secondary
speech corpus

= secondary corpus:
= primary corpus:

prosodic features

Pt 2

vector
post-filter

A A
Sl
M, | |M,

A A

Post-filter training

METHOD
Enhance the word vector with prosodic information

raw word
vector
[NNENEN]

enhanced

word vector
(nnnnnn|

acoustic features

/] acoustic model

=

vector
| post-filter

,, EEEH

1
1
—T>

.

w

Vector enhancing

[

grapheme-to
phoneme

text —T

primary
speech corpus

Acoustic model training

small, with expert prosodic annotation
huge, w/o expert prosodic annotation
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EXPERIMENTS

Corpora and toolkit
® Primary corpus

= 16 hours' recording of a female voice (BC2011, the Nancy voice [12])

® Secondary corpus

= f2b set (< 1 hour) of Boston University Radio News Corpus [13]

® Raw word vectors

= 80 dimensional vector (from RNN language model)
http://www.fit.vutbr.cz/~imikolov/rnnlm/word_projections-80.txt.gz

® Toolkits

= Acoustic model: modified CURRENNT [24] http.//tonywangx.github.io
= Prosodic annotation model: Theano (15

[12] King, S. & Karaiskos, V., 2011. The Blizzard Challenge 2011.
[13] Ostendorf, M., Price, P. J., & Shattuck-Hufnagel, S. (1995). The Boston University radio news corpus. Linguistic Data Consortium.

[14] Weninger, F., et. al. (2015). Introducing currennt: The munich open-source cuda recurrent neural network toolkit. JMLR, 16(1), 547-551.

[15] Bastien, F., et. al. (2012). Theano: new features and speed improvements. Deep Learning and Unsupervised Feature Learning Workshop

29



EXPERIMENTS

Automatic prosodic annotation model
® Input & target

= jnput: wavelet representation of FO (5 dim) 1>l + RMS per frame (1 dim)
= target: H*, IH*, L*, bi-tonal accent, other [16]

ToBI,tags
® Network structure [softmax]
= Convolutional neural network (CNN) part feedforward
* 10 feature filters with size (5, 6) network
* max pooling stride (10, 1) CNN part
= Feedforward network i
3 hidden layers with layer size 500 * 320 * 80 FUSRMS

® Results on a binary annotation task (i.e. the word is accent or not)
f;score: 0.882

[15] Suni, A. S., Aalto, D., Raitio, T., Alku, P., & Vainio, M. (2013). Wavelets for intonation modeling in HMM speech synthesis. SSW8, (pp
285-290).
[16] Black, A. W., & Hunt, A. J. (1996). Generating FO contours from ToBI labels using linear regression. ICSLP (pp. 1385-1388)

30



EXPERIMENTS

Vector poster-filter
® Model structure

= 4 hidden layers with layer size:
80 * 160 * 160 * 80

® Results

= similarity between target vector
and input vector

Sim(x,y) =
@9 = 12wl

Similarity score

0.4

0.2}

-0.2

Py

feedforward
network
A A
My, oM mEnE my,-
word
w wo vectors

_("'s'i'r;(;zw, P.)

matched word w

random word w~

W)

50 250 450 650
Training epoch

850

31




EXPERIMENTS

FO generationin TTS
Experimental systems

system ID input to the acoustic model (FO trajectory model)
Ry phonemes
R, phonemes + conventional prosodic context (automatically predicted)
Ry phonemes + raw word vector
Rye phonemes + enhanced word vector
Rwr,, |pPhonemes + raw word vector tuned by back-propagation in TTS
we,, | Phonemes + enhanced word vector tuned by back-propagation in TTS

all systems use another acoustic model to predict spectral features

32




Results

® Objective test

EXPERIMENTS

G.) T T T T T T
© 0.79 | T .
O i
»n
- T
[} L
= 078 ¢ I I .
£ T
t' I
o
G 0.77 + .
o
L 1
R R R R R R
N p wr we wr we
bp bp
% 40 F T T T T T ]
(&}
¢
T 395 i -
= | T
c 1
= 39} T |
L
0 1
E 38.5 | I J
o
L
R R R R R R
N p wr we wr we
bp bp
Ry| only phoneme Ry, | + raw word vector Rwr,, | +raw word vector (fine tuned)
R, | + prosodic context Rye | + enhanced word vector Rye,, |+ enhanced word vector (fine tuned)

33



EXPERIMENTS

250

)

)

Results
® Sample
if the move would require
400 s
= 300 -
L
L 200
NATURAL
100 R, i
Rp
0 ' I:{wr
50 100 150 R
Frame index e
Ry| only phoneme Q ®)> Ry, | + raw word vector Q ®)> Rwr,, | +raw word vector (fine tuned)
R, | + prosodic context Q ®>> Rye | + enhanced word vectc Q ®>> Rwebp + enhanced word vector (fine tuned Q §)>> 34




EXPERIMENTS

Results
® Subjective test

= conducted in CSTR, by 20 paid native speakers

Ry ' ' )

53.00% Rwey,,,
Dl R, I 53.21% IRwe )
)  Rwe 50.13% :Rwebp /9)
0% 50% 100%

Ry| only phoneme Ry, | + raw word vector Rwr,, | +raw word vector (fine tuned)

R, | + prosodic context Rye | +enhanced word vector

Rye,, |+ enhanced word vector (fine tuned)

some evaluators favor R, very much while others favor R,,,- very much,
because of missing the context of sentence ?

= more samples: http://tonywangx.github.io
https://www.dropbox.com/s/ulhxvqbpl5ujlrd/WE_0301_x01.tar.gz?dI=0



CONCLUSION
Methods

enhance raw word vectors using prosodic features
prosodic features extracted from an prosodic annotation model
vector post-filter for enhancing raw vectors

Results

improves the objective measure on FO modelling
no significant improvement on perception

Future work

alterative to modelling FO trajectory at the frame level ?
annotation on the sub-set of primary corpus ?
use high level features (e.g., theme and rheme ?)



Thank you for your attention
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® Visualizing the word vectors using t-SNE [¢]

original word vectors http://www.fit.vutbr.cz/~imikolov/rnnim/word projections-80.txt.gz

80 I I I I I I I
,  * ®»
60 - (e} O —
750 \ QO A
O§ ’? @ m ¢ % *
. & Hye %
40 |- #* 0 Y 0%08 e ]
*
o *
; TR IR D 44 YR
o X %@K 0
2 oo | * o &0 Og v -
2 T x & 9 . %
£ a A
o o %
g " = Q *
§ 0L a /| ¥ o O . —
¥
o
2 v F Ra &
2
g -20 - 9 + 4+ & or : N
+O A
g e Wy @]D@de O article
© B + ™ ’§6H_i_- 5*@ U[E'HJD o +  determiner
40 L © -d:f- H ot g 0 %  conjunction |
g F+ # [% o O preposition
! & & K {  adjective
@ ) v/ number
60 - . & noun
‘ pronoun
adverb
verb
-80 | | | | | | |
-80 -60 -40 -20 0 20 40 60 80

Compressed data dimension 1

[16] Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579-2605.

https://lvdmaaten.github.io/tsne/ 38



® Visualizing the word vectors using t-SNE [¢]

word vectors after prosodic enhancement

60 I I I I I I I
adverb
40 - + -
®
[a\| 20 — 7
c
.0
1%}
& a
E oL T of J
5 0 =
3 i
H
©
3 %-F*E]EI
@ -20 + + |
o
: r
8 QO  article
40 - . +  determiner |7
article %  conjunction
O preposition
{ adjective
60 " * 7 number
60 verb @ noun
pronoun
adverb
verb
-80 | | | | | | T
-80 -60 -40 -20 0 20 40 60 80

Compressed data dimension 1

[16] Maaten, L. van der, & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(Nov), 2579-2605.
https://lvdmaaten.github.io/tsne/
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EXPERIMENTS

Prosodic annotation model
® Task

* predict a ToBI tag for each word

* input:
= wavelet representation of FO (5 dim)
= RMS per frame (1 dim)
= zero-padding to 160 frames/word

* target: H*, IH*, L*, bitonal-accent, others

ToBI, tags
® Model structure
|softmax|
* Convolutional neural network CoEsen
. . . DNN part
= 10 feature filters with size (5, 6)
. . CNN part
= max pooling stride (10, 1)
* feedforward neural network T

FO&RMS

= 500 *320* 80 features



PREVIOUS WORK

TTS with word vectors
® word vectors

one-hot wvector word vector
cat (0,0,0,..,0,1,0,..01€ RWVI [0.0023,..,0.0054..1€ RP
dog [0,0,0,1,..,0,0,..01€ RIVI [0.0013,..,0.0033..]€ RP

® Advantages

= linguistic regularity
= Jow dimension ( D is smaller than the size of dictionary |V])
= unsupervised learning based on plain text
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