

Compare HMM, DNN and RNN on huge speaker dependent corpora for Japanese Text-to-Speech

Xin WANG, Shinji TAKAKI, Junichi YAMAGISHI National Institute of Informatics, Japan 2016-09-14

Evaluate the performance of HMM, feedforward and recurrent neural network trained using different amount of data

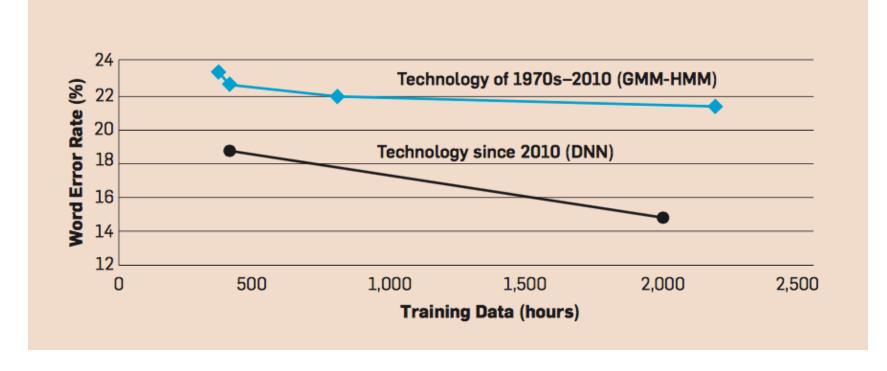
Xin WANG, Shinji TAKAKI, Junichi YAMAGISHI National Institute of Informatics, Japan 2016-09-14

CONTENTS

- Motivation
- Corpora and system configuration
- Objective and subjective results
- Conclusion

Results of ASR [1]

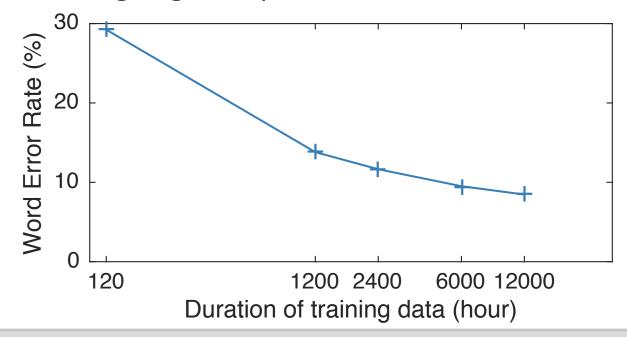
Figure 3. There is no data like more data. Recognition word error rate vs. the amount of training hours for illustrative purposes only. This figure illustrates how modern speech recognition systems can benefit from increased training data.



Can we draw a similar figure for speech synthesis?

Corpora for ASR

- Large corpora (> 1000 hours)
 - speakers variation, noise types
 - •
- Benefits of using larger corpora [2]



For speech synthesis

- Large corpora ?
 - speaker-dependent
 - quality control
 - expert annotation
 - corpora for speech synthesis are `expensive'

- Benefits of using larger corpora?
 - quality VS quantity
 - accurate and fine annotation on a small corpus
 - large amount of data without expert annotation

For this work

- (Relatively) Large Japanese corpora are available
- What can we do with the data?

It is better to do something simple than nothing at all. [3]

 evaluate different kinds of acoustical model trained using different amount of data

CONTENTS

- Motivation
- Corpora and system configuration
- Objective and subjective results
- Conclusion

CORPORA

Overview of the corpora

Originally designed for XIMERA, by ATR Japan^[4,5]

Male voice

Genre	Size in
Genre	hours
Novel	9.95
News	70.21
Sentence	2.1
Conversation	12.11
Word	4.93
Syllables	0.34
Voice check	9.41
Miscellaneous	1.63
Total	110.68

Female voice

Genre	Size in
Genre	hours
Novel	17.27
News	20.46
Sentence	2.42
Conversation	3.86
Word	5.71
Voice check	9.83
Total	59.55

From Table 1, Table 2 of [4]

Input/output features

- Input textual features
 - text analysis:
 - grapheme-to-phoneme: Open JTalk [6]
 - Part-of-Speech & morphological analysis: Mecab [7]
 - dimension: 389 for neural network
 - input features for the whole corpora are automatically analyzed, without expert annotation

Input/output features

Output acoustic features

Name	Dimension	Note
Mel-generalized cepstrum coefficients (MGC)	60	Bark-scale, warping factor 0.77
F0 trajectory in Mel-scale	1	multiple F0 trackers + median filtering
Band aperiodicity	25	average value in critical band

- based on STRAIGHT vocoder [8]
- dimension: 259, with static, delta, delta-delta

Acoustic models

System notation and configuration

Notation	System	Configuration
НММ	HMM-based system	the HTS 2.3 recipe
DBLSTM- RNN	Recurrent neural network with bi- directional long short term memory (LSTM) units	2 feedforward layers, 512 nodes/layer 2 bi-directional LSTM layers, 256 nodes/layer 1 linear projection output layer Number of parameter 1.59m
DNN	Deep feedforward neural network	1 feedforward layers, 1024 nodes/layer 3 feedforward layers, 512 nodes/layer 1 linear projection output layer Number of parameter 1.59m

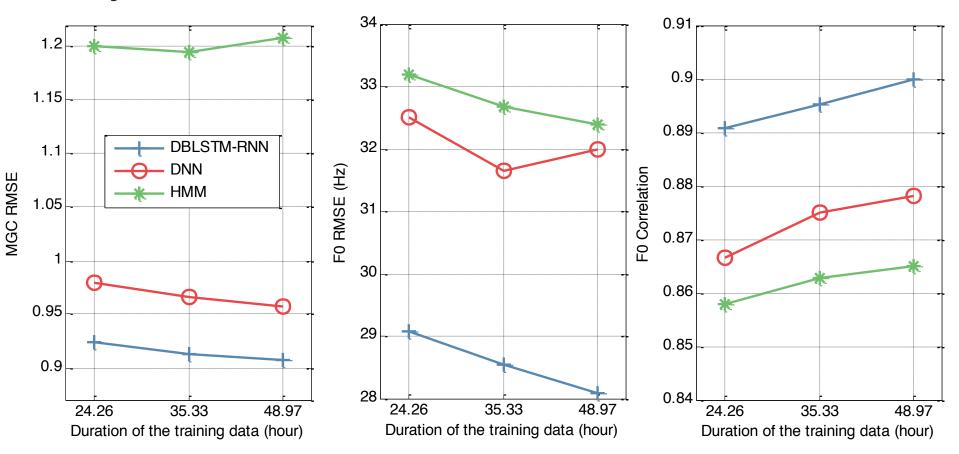
Acoustic models

- Neural network toolkit: CURRENNT [8]
 - random initialization
 - stochastic gradient descent + early stopping
 - male voice: 500 utterances for validation, 500 for test
 - female voice: 260 utterances for validation, 260 for test

CONTENTS

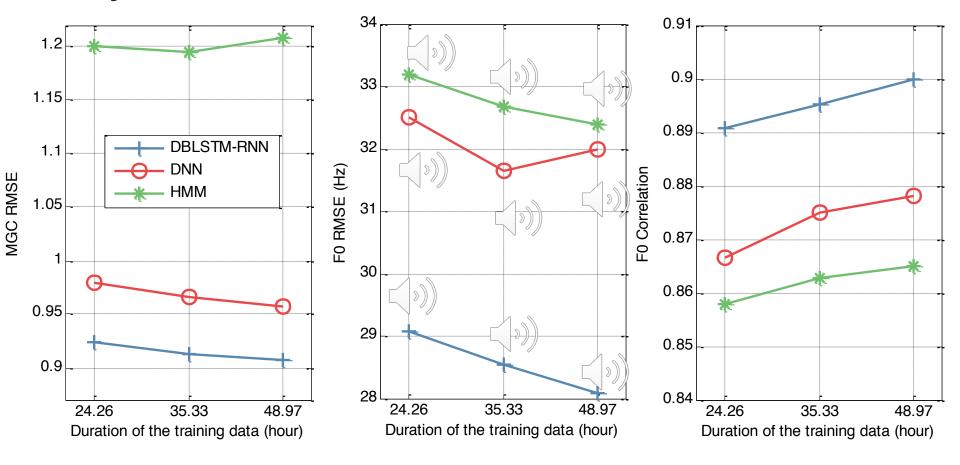
- Motivation
- Corpora and system configuration
- Objective and subjective results
- Conclusion

Objective measure - female voice

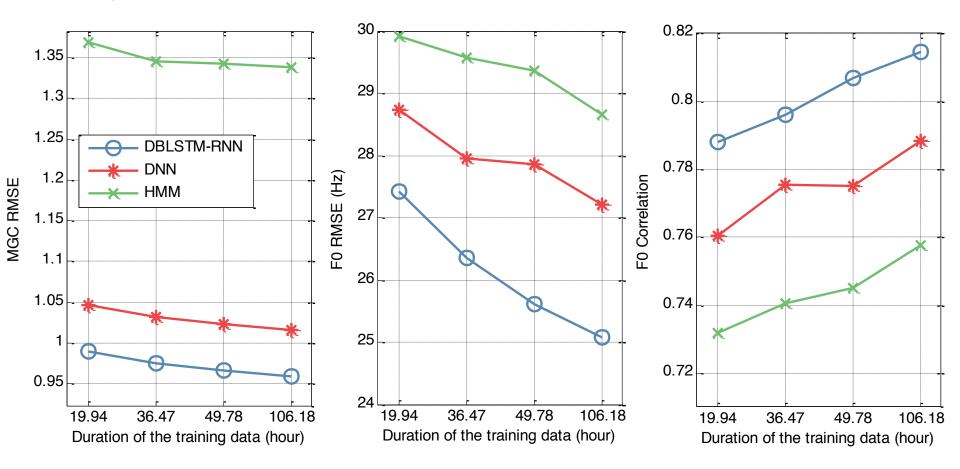


DBLSTM-RNN will generate more accurate F0 with more data?

Objective measure - female voice

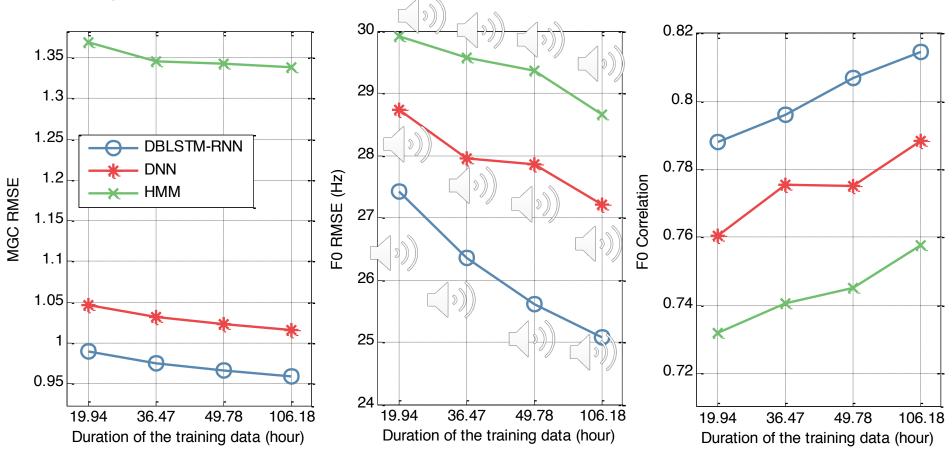


Objective measure - male voice

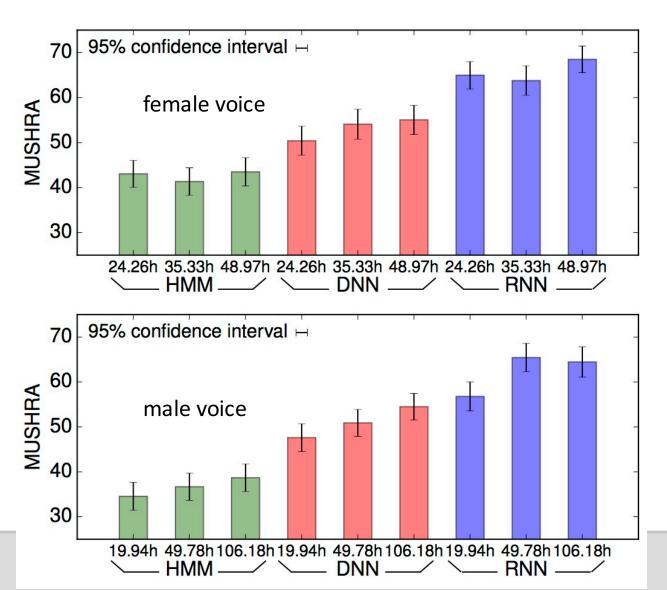


DBLSTM-RNN will generate more accurate F0 with more data?

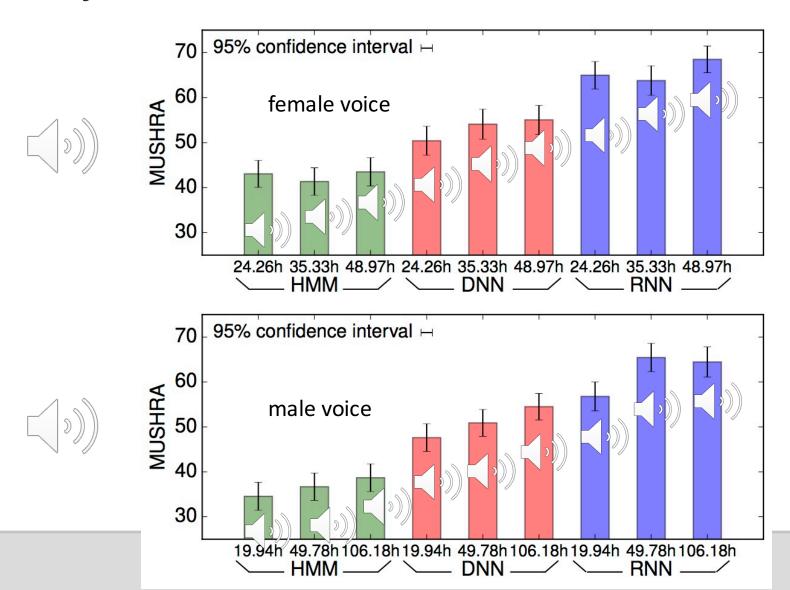
Objective measure - male voice



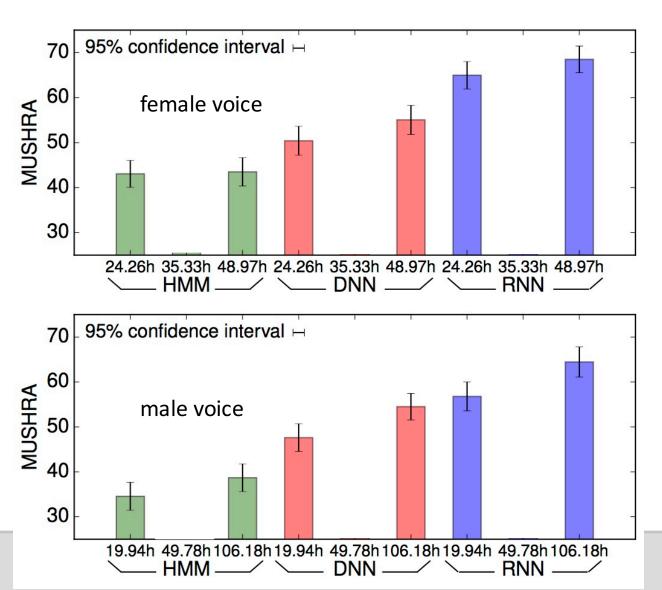
Subjective measure - MUSHRA



Subjective measure - MUSHRA



Subjective measure - MUSHRA



CONTENTS

- Motivation
- Corpora and system configuration
- Objective and subjective results
- Conclusion

Answer to the previous question

- Benefits of using more data?
 - objective result:
 - F0 => more accurate synthetic F0 (DBLSTM-RNN)
 - MGC => the improvement gradually decreases
 - subjective result:
 - improvement can be observed

 Using more data without fine annotation is less effective than using a more effective model?

Future questions

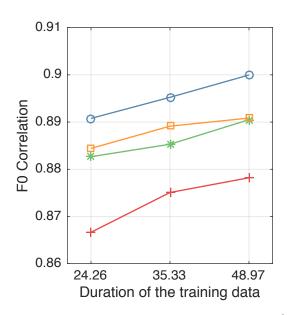
- The gap between DBLSTM-RNN and DNN on F0 is due to the recurrent connection?
- Is there any pitch-related feature better than F0 trajectory?

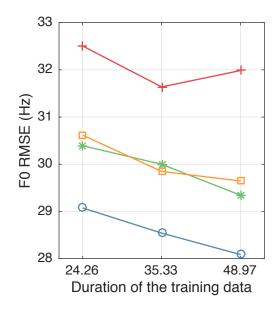
•

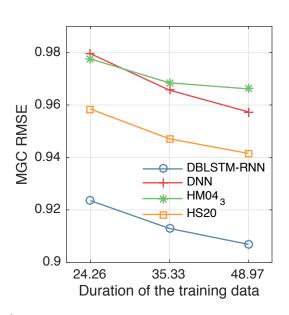
One question being explored

• The gap between DBLSTM-RNN and DNN on F0 is due to the recurrent connection?

on the female voice





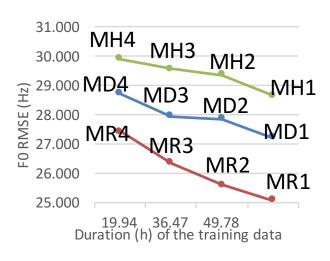


- a highway network is a feedforward neural network
- **HM04**₂: a multi-stream highway network, 4 tanh hidden layers
- HS20: a single-stream highway network, 20 tanh hidden layers

Not available due to Japanese law on personal information protection

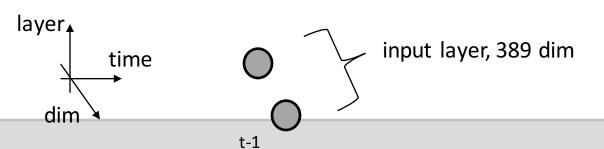
http://tonywangx.github.io

- Female voice (60M) with 15 samples/system https://www.dropbox.com/s/dhh26clsjxaiwy7/JVOICE_F009_15_0502_x04.tar.gz?dl=0
- Male voice (90M) with 15 samples/system https://www.dropbox.com/s/p49zfunh27enk3x/JVOICE_M007_15_0502_x05.tar.gz?dl=0
- Naming of the folder in the above package
 - FN and MN: natural voice
 - **\$#**&:
 - \$: F female, M male
 - #: H HMM, D DNN, R RNN
 - &: 1 full training set, 2 less data ...
 - see example on the right



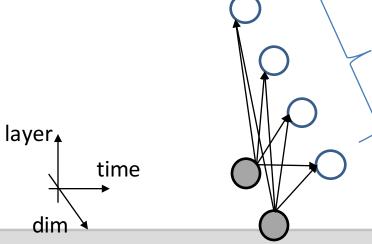
Thanks for your attention Q & A

Acoustic models



Acoustic models

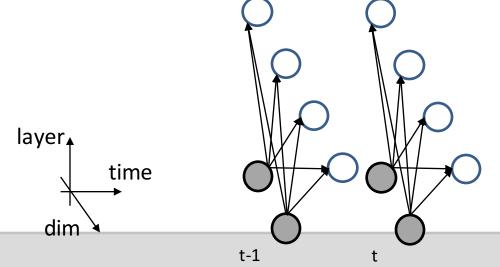
DBLSTM-RNN



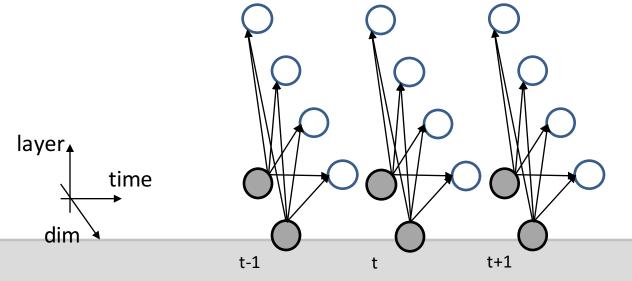
1st feed-forward layer 512 dim

t-1

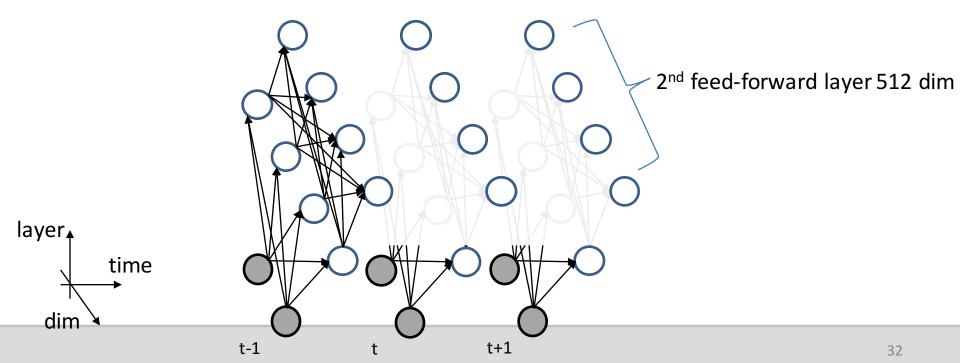
Acoustic models



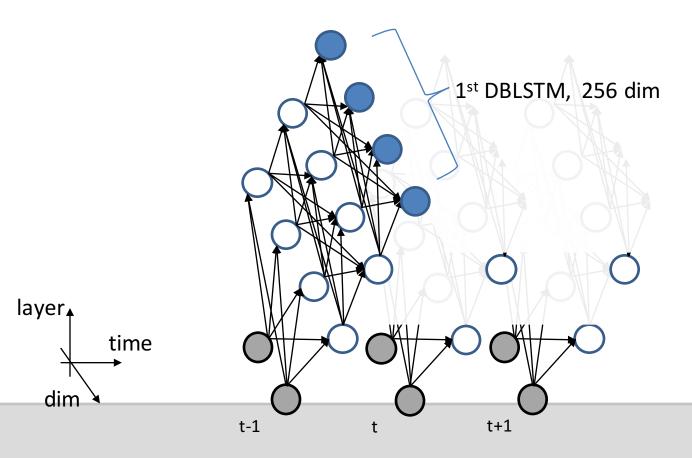
Acoustic models



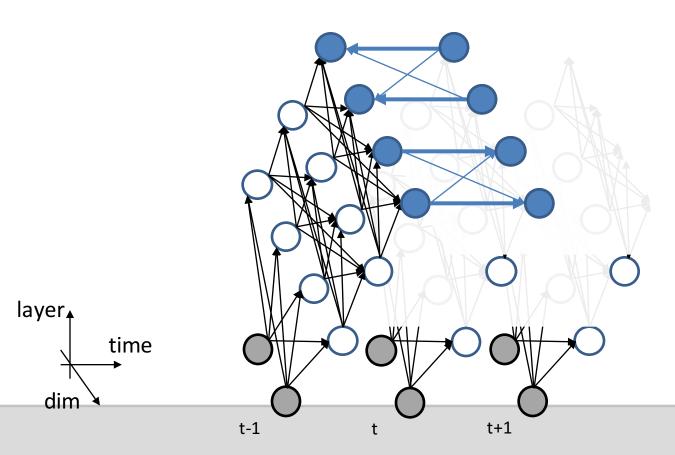
Acoustic models



Acoustic models

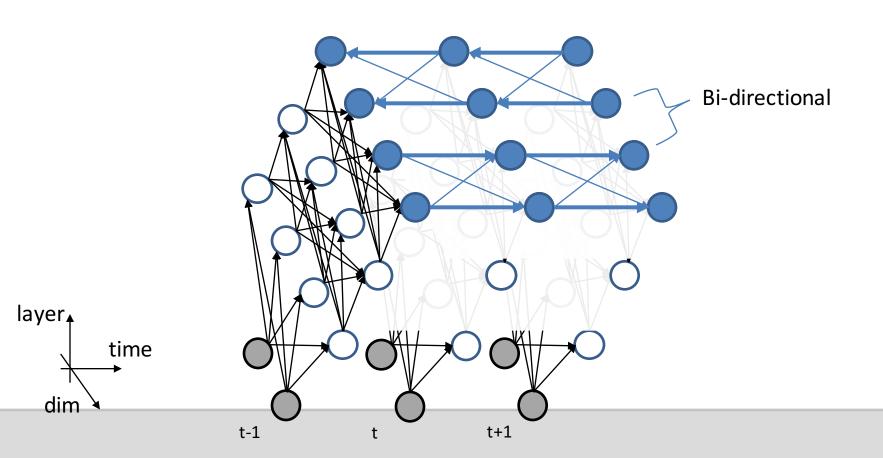


Acoustic models



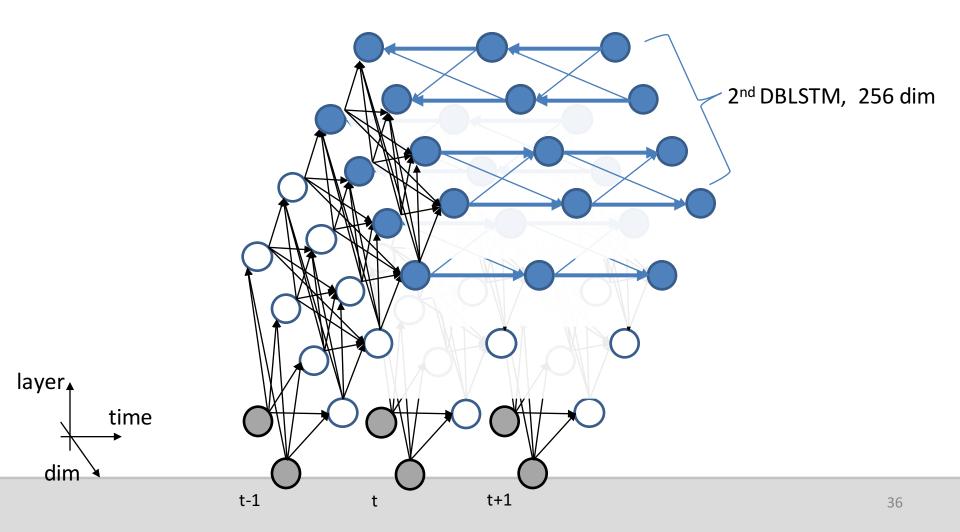
Acoustic models

DBLSTM-RNN



35

Acoustic models



Acoustic models

