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Introduction

Glottal inverse filtering (GIF) is useful, for example in excitation
modeling parametric speech synthesis [Raitio et al., 2011]

Recent text-to-speech synthesis quality improvements using
quasi-closed phase (QCP) inverse filtering [Juvela et al., 2016]

Issues:

QCP requires accurate pitch-marks, which are difficult to
estimate with breathy voices or noisy speech

Frame-by-frame analysis does not take advantage of the
relatively stationary voice production process
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Introduction

Composite autoregressive (CAR) system
[Kameoka and Kashino, 2009] provides a robust statistical model
for source-filter estimation
Model is optimised in time-frequency domain, which allow taking
advantage of inter-frame dependencies
Current expectation-maximisation (EM) based algorithm is
somewhat slow
This paper:
Derive faster optimisation method for the CAR system, similarly
to NMF multiplicative updates
Develop a GIF method based on CAR
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Composite autoregressive system
Spectrum is modeled as a weighted sum of source and filter pair
combinations
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Signal model

Each component in frame n has the distribution
Xi,j

n ∼ NC(0,Λ
i,j
n ), where Λi,j

n = diag(λi,j
1,n, · · · , λ

i,j
K,n)

The observed complex spectrogram Yn is given by sum of Xi,j
n

Yn =
∑
i,j

Xi,j
n ∼ N (0,Φn), (1)

Φn =
∑
i,j

Λi,j
n = diag(φ1,n, . . . , φK,n) (2)

MM optimisation of CAR system with application to GIF 6/25
Lauri Juvela Sept. 9, 2016
Aalto University



Composite autoregressive system

Model component λi,j
k,n for frame n and spectrum bin k

Source components Fi
k, in total I templates

All-pole filter components Hj
k = 1/|Aj(ej2πk/K)|2, in total J

Model spectrogram component φk,n =
∑

i,j λ
i,j
k,n

λi,j
k,n =

Ui,j
n Fi

k∣∣Aj(ej2πk/K)
∣∣2 = Ui,j

n Fi
kHj

k (3)

Aj(z) = 1− aj
1z−1 − · · · − aj

Pz−P (4)
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Composite autoregressive system

Maximising the likelihood of Yk,n with respect to φk,n amounts to
minimising the Itakura-Saito divergence DIS

DIS(Y,Φ) =
∑
k,n

(
Yk,n

φk,n
+ log(φk,n)

)
+ const. (5)

We already know how to do this for NMF (good description in
[Kameoka, 2016])

MM gives the multiplicative NMF update rules
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Majorisation-minimisation
Minimizing objective function D(θ) directly is difficult
Construct upper bound (auxiliary) function G

(
θ, α(`)

)
that is

easy to minimize
Alternating between setting a new G

(
θ, α(`)

)
(majorization) and

updating θ (minimization) is guaranteed to decrease D(θ)
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Generalized gamma prior

What do we want from the prior?
Should induce sparsity in the activations (approximately only one
source-filter pair is active at a time)
Prior mean should encourage spectral tilt to the source templates
Use generalized gamma prior (with parameters η,d,p), shown
here only for the activations U

p(U) ∝ Ud−1 exp
(
−U
η

p)
(6)

log(U) = (d− 1) log(U)− U
η

p
+ const. (7)
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Generalized gamma prior

Up term is problematic, construct upper bound by constraining
p < 1, making Up concave

Then Up is bounded by its tangent at U = V, where V is the
auxiliary variable

Up ≤ pVp−1(U − V) + Vp + const. (8)
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Auxiliary function
Construct upper bound by using Jensen’s inequality and tangent
inequality

DIS(Y,Φ) =
∑
k,n

(
Yk,n

φk,n
+ log(φk,n)

)
−
∑
n,i,j

log(p(Ui,j
n ))

GIS =
∑
k,n

∑
i,j

Yk,n(ξ
i,j
k,n)

2

Fi
kUi,j

n Hj
k

+
∑
i,j

Fi
kUi,j

n Hj
k

αk,n


−
∑
n,i,j

[
(d− 1) log(Ui,j

n )

−1
η

p(V i,j
n )p−1(Ui,j

n − V i,j
n ) +

1
η
(V i,j

n )p
]

(9)
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Auxiliary function

(αk,n, ξ
i,j
k,n,V

i,j
n ) are the auxiliary variables, and the equality for

the upper bound holds only when

ξi,j
k,n =

Ui,j
n Fi

kHj
k

φk,n
(10)

αk,n = φk,n (11)

V i,j
n = Ui,j

n (12)
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Update rules
Differentiating GIS w.r.t. Ui,j

n and substituting the aux. vars. gives

Ui,j
n ←

bU +
√

b2
U + 4aUcU

2aU
(13)

aU =
∑

k

Fi
kHj

k
φk,n

+
p
η
(Ui,j

n )p−1 (14)

bU = K(d− 1) (15)

cU =
∑

k

Yk,nFi
kHj

k(U
i,j
n )2

φ2
k,n

(16)

Constraining d ≥ 1 guarantees positivity
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Update rules

Similar procedure for Fi
k gives

Fi
k ←

bH +
√

b2
H + 4aHcH

2aH
(17)

aH =
∑
n,j

Ui,j
n Hj

k
φk,n

+
p
ηk,i

(Fi
k)

p−1 (18)

bH = NJ(d− 1) (19)

cH =
∑
n,j

Yk,nUi,j
n Hj

k(F
i
k)

2

φ2
k,n

(20)
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Update rules

Uniform prior simplifies update to

Fi
k ← Fi

k

√√√√√√
∑

n,j
Yk,nUi,j

n Hj
k

φ2
k,n∑

n,j
Ui,j

n Hj
k

φk,n

(21)

This closely resembles the I-S multiplicative NMF updates
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Update rules
The all-pole filter coefficients are solved from the normal
equations resulting from a similar update in spectral domain

rj
0 rj

1 . . . rj
P−1

rj
1 rj

0 rj
P−2

...
. . .

...
rj

P−1 rj
P−2 . . . rj

0




aj
1

aj
2
...

aj
P

 =


rj

1
rj

2
...

rj
P

 (22)

rj
1,...,P = DFT−1

Hj
k

√√√√√√
∑

n,i
Yk,nUi,j

n Fi
k

φ2
k,n∑

n,i
Ui,j

n Fi
k

φk,n

 (23)
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Source prior
Set an LF glottal model based prior for the source templates
Use the ηi

k, parameter which is proportional to distribution mean

frequency

p
o
w

e
r 

(d
B

)
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Convergence rate
Plot mean I-S divergence versus iteration index
MM-based methods converge faster than the original EM-based
method
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Glottal inverse filtering

The expected value of individual model component contribution
to Yn,k is

E
[
Ŷ i,j

k,n

]
= Yk,n

λi,j
k,n

φk,n
= Yk,n

Ui,j
n Fi

kHj
k

φk,n
(24)

Source estimate is obtained by removing the filter component
and summing over components

Ŝk,n =
∑
i,j

Ŝi,j
k,n =

∑
i,j

Yk,n
Ui,j

n Fi
k

φk,n
(25)
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Test signals

Synthetic signals with known ground truth are required to
evaluate glottal inverse filtering methods

Use a corpus of sustained Finnish vowels with labelled neutral,
breathy and pressed phonation

Estimate LPC envelope and f0 from speech, synthesize with LF
pulses modified by harmonic-to-noise ratio (HNR)

Style Speaker 1 Speaker 2
Neutral orig. orig.

syn. syn.
Breathy orig. orig.

syn. syn.
Pressed orig. orig.

syn. syn.
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Evaluation

Compare with iterative adaptive inverse filtering (IAIF)
[Alku, 1992] and QCP methods (both currently used in glottal
vocoding)
Use error measures derived from glottal parameterisations:

Mean squared error (MSE)
First harmonic to second harmonic difference in dB (H1H2)
Harmonic Richness Factor (HRF)
Normalised Amplitude Quotient (NAQ)
Quasi-Open Quotient (QOQ)

Error measures grouped by phonation, lower score is better
Proposed method CAR-MM without source prior and
CAR-MM-LF with LF-based source prior
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Evaluation

Neutral phonation (I = 5,J = 3,N = 26593)
MSE H1H2 HRF NAQ QOQ

IAIF 6.31e-04 2.05 0.36 0.13 0.18
QCP 7.92e-04 2.03 0.79 0.14 0.28
CAR-MM 8.35e-04 1.76 0.28 0.23 0.24
CAR-MM-LF 8.18e-04 1.74 0.49 0.16 0.26

Pressed phonation (I = 5,J = 3,N = 26774)
MSE H1H2 HRF NAQ QOQ

IAIF 9.27e-04 1.75 0.72 0.14 0.20
QCP 8.51e-04 2.03 1.23 0.20 0.30
CAR-MM 8.26e-04 1.68 0.47 0.18 0.24
CAR-MM-LF 8.18e-04 1.74 0.49 0.16 0.26
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Evaluation

Breathy phonation (I = 5,J = 3,N = 32281)
MSE H1H2 HRF NAQ QOQ

IAIF 4.95e-04 4.91 0.39 0.07 0.11
QCP 9.69e-04 2.44 0.71 0.17 0.24
CAR-MM 4.82e-04 3.36 0.37 0.07 0.10
CAR-MM-LF 5.36e-04 4.06 0.43 0.07 0.12
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Conclusion

Composite autoregressive system provides a convenient NMF
like source-filter modelling framework

Derived MM optimisation algorithm for CAR system converges
faster than the original EM-based algorithm

Proposed glottal inverse filtering method performs reasonably
well for neutral and pressed phonation and outperforms
reference methods with breathy phonation
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