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1 Introduction

This work uses highway networks [1] to explore two questions:

e What’s the performance of a network with more than 10 hidden layers for
speech synthesis?

e Is it always the best strategy to share the same hidden states for generat-
ing different kinds of acoustic features?

The reasons to use highway networks:

e While a deep network is difficult to train, a highway network makes it
easier by constructing an information highway over non-linear layers

e While the hidden states of a conventional network is hard to interpret, the
output of the highway gate in a highway network shows plain information
about the behavior of the network

2 The highway block and the highway network

Given an input vector x, a highway block generates a output vector y as:

y=Hz)oT(x)+(1-T(x) o, (1)
H(CB) = f(WHQB + bH), (2)
T(%) = O'(WTLE + bT), (3)

where H(x) is the hidden state (or the hidden feature) computed by conven-
tional feedforward layers, and 7 (x) denotes the output of the highway gate.
o(.) in 7(.) is a sigmoid function, and f(.) in H(.) can be a tanh function.

e When 7 (x) ~ 0, y ~ « and gradients will not be attenuated by f(.)
e When 7(x) ~ 1, y = H(x) is the output of a normal feedforward layer
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Fig.1 A highway block and the highway networks

A highway network contains several highway blocks:

e A single-stream highway network (HS) generates Mel-generalized cepstral
(MGC), FO and band aperiodicity (BAP) from a single highway network

e A multi-stream highway network (HM) uses separate highway networks
to generate MGC, FO and BAP

Note, DS denotes the single-stream feedforward neural network.

3 Corpus and Systems

e Corpus: the Blizzard Challenge 2011 corpus (the Nancy voice)
e Input: a 382-dim vector given by Flite (phoneme, pitch accent, etc.)
e Target: a 259-dim vector given by STRAIGHT

-MGC, delta, delta-delta (180-dim in total)
- U/V, continuous FO, delta, delta-delta (4-dim in total)
—-BAP, delta, delta-delta (75-dim in total)

e Initialization strategy:

—HS and HM: the plain random initialization for Wy and by
-HS and HM.: 0 for W, -1,5 for by

- DS: the ‘Normalized Initialization’ [2]

e Training Strategy: the plain stochastic gradient descent algorithm

Toolkit and synthesis speech samples: http://tonywangx.github.io/
Comments & suggestions are welcome. Contact: wangxin@nii.ac.jp
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4 Experiment on the depth of highway networks
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5 Experiment on the multi-stream highway network

Although the perceived difference is insignificant, HM achieved better objec-
tive results on FO generation than HS and DS.
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Fig.3 Performance of networks with 14 hidden layers. The number near HS
and DS denotes their layer size ({382, 782,882, 1024}).
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Fig.4a A MUSHRA test (14 hidden layers for all)

Why is HM better on FO modeling?

¢ FO and MGC may rely on different hidden representations. According to
Fig.5, the generation of FO requires less non-linear transformation

e The hidden states of HS (and possibly DS) is mainly for MGC generation.
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Fig.5 Histogram of 7 (x) for HM’s FO stream (the first row), MGC stream
(the second row), and HS’s single stream (the third row).

6 Conclusion

¢ A network should be deep enough but do not need to be deeper. The effec-
tive depth is 14 for the used corpus and experimental configuration;

e Generating FO separately from MGC can improve the accuracy of the gen-
erated FO, particularly for a smaller network.
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