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Background F1/2G

Statistical parametric speech synthesis
– DNN-based speech synthesis [Zen et al.; 12]

Waveform generation for TTS
– High-quality vocoder (STRAIGHT, WORLD)

• Quality deterioration such as buzziness
– Sinusoidal vocoder [Hu et al.; 15]

– Modeling complex spectra [Hu et al.; 16]

– Signal reshaping [Espic et al.; 16]

– Sample RNN [Mehri et al.; 17]

– WaveNet [van den Oord et al.; 16]
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Text-to-speech synthesizer with neither the vocoder and 
computational explosion



Background F2/2G

Direct modeling of frequency spectra
– Simple short-time Fourier transform (STFT)
– Spectral envelopes and harmonic structure are included
– Advantages of using STFT

• The representation is much closer to original waveform
• DNNs need to be used per frame instead of per sample

– Waveform generation based on phase recovery
Prediction of STFT based on a DNN

1. The use of F0 information as well as linguistic feature
2. KLD-based objective criterion   
3. Post-filtering of predicted STFT
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Statistical parametric speech synthesis
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Statistical parametric speech synthesis
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Architectures (Left conventional, Right proposed)

F0 information is explicitly used as inputs
STFT spectral amplitudes are the outputs 5

Vocoder-based
conventional framework

396 dims.

259 dims.

5 hidden layers
(1024 units)

STFT-based
proposed framework

398 dims.

2049 dims.

5 hidden layers
(1024 units)



Least square error (LSE)

Kullback-Leibler divergence (KLD)
– KLD-based criterion has been successfully used for 

spectral-domain source separation with NMF
– The sigmoid is used for an output layer in this work

Jobs.H

KLD-based training
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JDNN outputH Jframe indexH Jdim.

H Jfixed values for unnormalizationJlinear spectrumH
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Phase recovery from STFT amplitudes

Iterative framework to refine phase [Griffin and Lim; 84]
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Step 1: Generate an initial waveform using invert STFT
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Step 2:
STFT

�
Step 3: Replace the STFT amplitudes 

back to the original value

�
Step 4: Generate a new waveform using invert STFT

Step 2:
STFT

Step 1: Inverse STFT to generate an initial 
waveform 

Step 4: inverse STFT to generate a new waveform

Step 3: Replace the amplitudes
back to the original values



Experimental conditions (1/2)
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Detailed information of the proposed system
– Training: lf0, v/uv obtained from natural speech
– Synthesis: lf0, v/uv synthesized from Baseline
– 100 iteration for phase recovery

Database Blizzard Challenge 2011
Professional female, 12,085 utterances (17 hours)

Sampling frequency 48 kHz / 32 kHz

FFT points 4096 (2049-dim) / 2048 (1025-dim)

Feature vector
FConventional systemG

59 mel-cepstrum
log F0

Voiced/unvoiced parameter
25-band aperiodicity



Experimental conditions (2/2)

Signal processing post-filter for peak enhancement 
1. Predicted STFT are converted into linear-scale cepstrum
2. The post-filter is applied to the cepstrum
3. The post-filtered cepstrum is converted back into STFT
Wed-P-8-4-6 : GAN-based post-filter for STFT
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System name Input Output Criterion Post-filter Generation
Baseline Text Vocoder para. LSE Vocoder

Baseline+PF Text Vocoder para. LSE Vocoder
LSE Text log STFT LSE Phase recovery
KLD Text STFT KLD Phase recovery

LSE+F0 Text, F0 log STFT LSE Phase recovery
KLD+F0 Text, F0 STFT KLD Phase recovery

LSE+F0+PF Text, F0 log STFT LSE Phase recovery
KLD+F0+PF Text, F0 STFT KLD Phase recovery

√

√
√



Synthetic spectra (Low-frequency parts) 
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Synthetic spectra (Low-frequency parts) 
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Subjective test (MUSHRA, 14 native participants)

– KLD-based criterion was more appropriate
– Performance of STFT-based systems without post-

filtering was insufficient
– The proposed systems with post-filtering outperformed 

the conventional DNN-based synthesizer 14
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Conclusion

Direct modeling of frequency spectra
Waveform generation based on phase recovery

– These approaches were effective
1. The use of F0 information as well as linguistic features
2. KLD-based objective criterion   
3. Post-filtering of predicted STFT

Future work
– Wed-P-8-4-6: GAN-based post-filtering for STFT
– Phase modeling
– STFT-conditioned WaveNet, SampleRNN
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Synthetic samples

Baseline
Baseline+PF

LSE+F0
KLD+F0

KLD+F0+PF
KLD+F0+PF (32kHz)

20



Details of KLD

Kullback-Leibler divergence (KLD)
– Representing parameters of Poisson distribution

• Mean and variance are same
– Derivative
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