
1. It is not easy to train TTS and VC attacks 
using noisy found real audio data at all!! 

2. Speech enhancement is useful perceptually, 
but, increases detectable artifacts

3. The attacks using the noisy found data were 
easy to be detected by the countermeasures 

ConclusionAnti-spoofing

Result

1. Can we construct TTS and VC attacks using 
noisy found real audio data (such as Youtube) 
instead of clean data? 

2. Is speech enhancement useful? 
3. Are such the attacks easy or difficult to detect?  

Research questions Found audio
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Voice conversion & TTS

Estimated SNR of Obama's found data
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1-D CNN based speech 
enhancement using raw 
speech waveforms 
Least Square GAN criterion
G: U-net encoder-decoder 
architecture  
D: Similar to encoder of G
Databases (28 speakers):
Output: VCTK corpus 
Input: Noisy, Reverberant 
and/or Device-recorded 
versions of VCTK 

Subjective judgement (MOS)

VCTK datasets SNR (dB) Quality Cleanliness

- 17.2 3.58* 2.42

Noisy 49.8 2.73 3.35

Reverberant 22.7 3.55 3.17

Noisy, Reverb. 43.1 3.11 3.42*

Device-recorded 28.2 3.51* 3.31

D+N 40.1 3.26 3.02

D+NR 41.4 3.30 3.34

All 37.9 3.41 3.40*

Crowd source listening test using 129 subjects. * mark indicates non-
statistically significant differences. Other differences are significant.

TTS and VC systems using a common 
Wavenet vocoder where 80-dim mel-
spectrogram was estimated using 
either deep auto-regressive network 
(TTS case) or cycle-GAN (VC case) 

Cycle-GAN

Auto-regressive 
network 

Quality Similarity

Obama 4.40 4.70

Copy 
synthesis

2.45 2.99

VC1 2.66 1.56

VC2 2.67 1.55

VC3 2.83 1.56

TTS1 2.49 1.43

TTS2 2.51 1.40

TTS3 2.63 1.45

Number of subjects is 103. See a table 
below for configs for VC and TTS.

ASVspoof2015 VCC2016

Copy synthesis 4.63 8.46

VC1 (jpn2eng) 2.32 1.09

VC2 (eng2eng) 2.16 0.00

VC3 (mix2eng) 2.25 1.01

TTS1 (Noisy) 1.60 0.00

TTS2 (All) 2.01 0.00

TTS3 (All+reverb) 0.79 0.00

Can we steal your vocal identity from the Internet? 
Initial investigation of cloning Obama’s voice using GAN, WaveNet and low-quality found data

Jaime Lorenzo-Trueba, Fuming Fang, Xin Wang, Isao Echizen (NII, Japan), 
Junichi Yamagishi (NII, Japan / UoE, UK), Tomi Kinnunen (UEF, Finland)

Countermeasures
CQCC-GMMs
Trained using 
 - ASVspoof 2015
 - VCC 2016 (used 
for benchmark of 
VCC 2018)
EER in percentage

All speech databases (clean, noisy, reverberant, device-
recorded VCTK) are publicly available at Datashare.

Codes for SEGAN and TTS are also publicly available.
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