

Modular Convolutional Neural Network for Discriminating between Computer-Generated Images and Photographic Images

Huy H. Nguyen*, Ngoc-Dung T. Tieu, Hoang-Quoc Nguyen-Son, Vincent Nozick, Junichi Yamagishi, and Isao Echizen

International Conference on Availability, Reliability and Security

August 27-30, 2018

Hamburg, Germany

Outline

- 1. Motivation
- 2. Related Work
- 3. Proposed Method
- 4. Evaluation
- 5. Conclusion & Future Work

1.1. Hard level for attackers

Hard

< Requirements for attackers to perform spoofing attacks>

Easy

The Digital Emily Project [1] (2008)

Face2Face: Real-time face capture & reenactment [2]

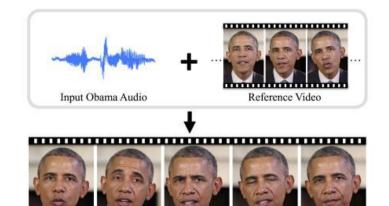
Deep Video Portraits =
Face2Face + head poses [3]
(2018)

(2016)

- [1] SIGGRAPH 2008 Expo / SIGGRAPH 2009 Computer Animation Festival / SIGGRAPH 2009 Courses / CVMP 2009 / IEEE CG&A 2010.
- [2] Thies, Justus, et al. "Face2Face: Real-time face capture and reenactment of RGB videos." CVPR 2016.
- [3] Kim, Hyeongwoo, et al. "Deep Video Portraits." SIGGRAPH 2018.

1.2. Examples

A presentation attack to break a facial authentication system [4]



Output Obama Video

Creating fake news/ Impersonation [5]

Pornography DeepFake[6]

- [4] Costa-Pazo, Artur et al. "The replay-mobile face presentation-attack database." BIOSIG 2016.
- [5] Suwajanakorn, Supasorn et al. "Synthesizing obama: learning lip sync from audio." TOG 36.4 (2017): 95.
- [6] Brandon, John "Terrifying high-tech porn: Creepy 'deepfake' videos are on the rise". Fox News. Retrieved 2018-02-20.

1.3. Computer-Generated Images (CGIs) vs Photographic Images (PIs)

There is a continuous competition between attackers and defenders.

- → CGI-PI discriminators need to be regularly updated to deal with:
 - New kind of attacks
 - Better quality of CGIs
 - Larger amount of data

Spoofing / forgery detection

- Using wavelet/wavelet-like transformations or differential images.
- Using the intrinsic properties of image acquisition devices.
- Using texture information.
- Using statistical analysis (independently or jointly with other methods).
- Using convolutional neural network (CNN) as classifier of handcrafted features / automatic feature extractor + classifier.

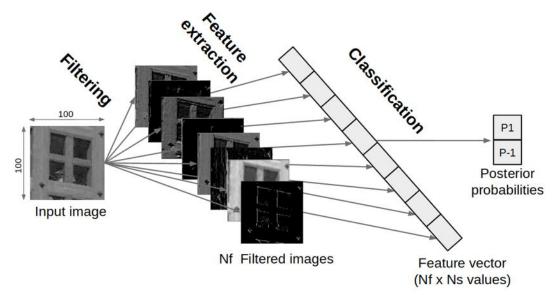
State-of-the-art spoofing /forgery detections [7]

- Hand-crafted feature + SVM (Fridrich & Kodovsky 2012)
- Hand-crafted feature + CNN (Cozzolino et al. 2017)
- CNN with ordinary layers (Bayar and Stamm 2016)
- CNN + statistical pooling (Rahmouni et al. 2017)
- Pre-trained [VGG19 + AlexNet] (Raghavendra et al. 2017)
- Two-stream network and a pre-trained GoogleLeNet Inception V3 (Zhou et al. 2017)
- Transfer learning of XceptionNet (Rössler et al. 2018)

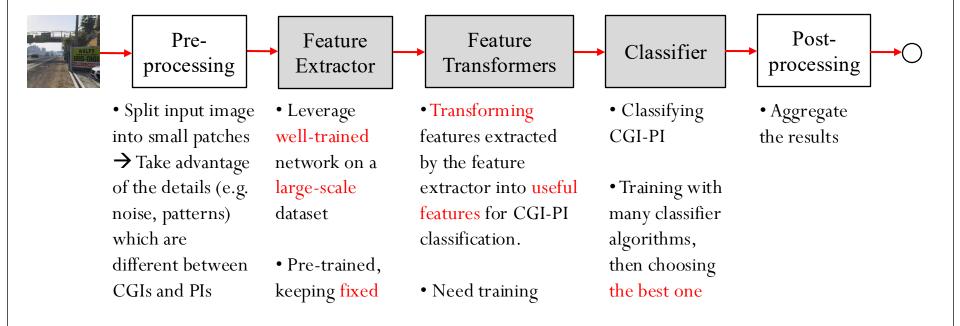
Spoofing / forgery detection

Rahmouni et al. 2017 [8]:

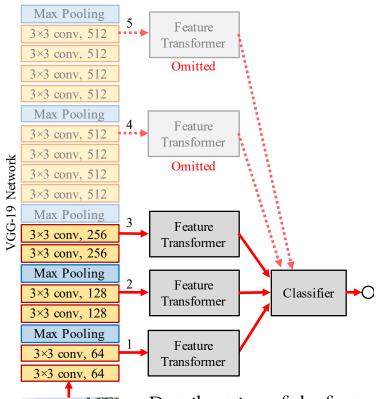
- Using CNN filters.
- Each filter ends with a statistical pooling layer, which calculates mean, variance, min and max of the filtered image.



3.1. Overview



3.2. Feature extractor



Features	Accuracy
1	95.40
1+2	97.60
1+2+3	97.70
1+2+3+4	96.50
1+2+3+4+5	96.10

Accuracy on Patch-100-Full dataset

Detail setting of the feature extractor

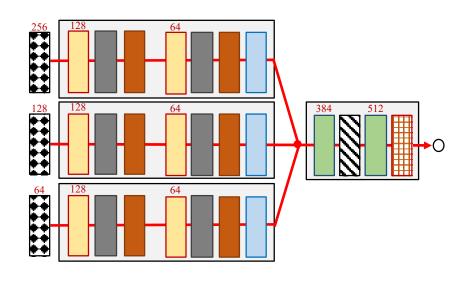
Note: Features are extracted before ReLU layers to get both positive and negative components.

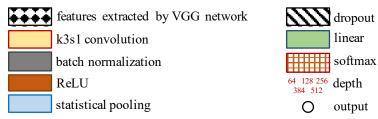
\

100

100

3.3. Feature transformers & classifier





Detailed settings of feature transformers and MLP classifier

Statistical pooling:

• Mean:

$$\mu_k = \frac{1}{H \times W} \sum_{i=1}^{H} \sum_{j=1}^{W} I_{kij}$$

• Variance:

$$\sigma_k^2 = \frac{1}{H \times W - 1} \sum_{i=1}^{H} \sum_{j=1}^{W} (I_{kij} - \mu_k)^2$$

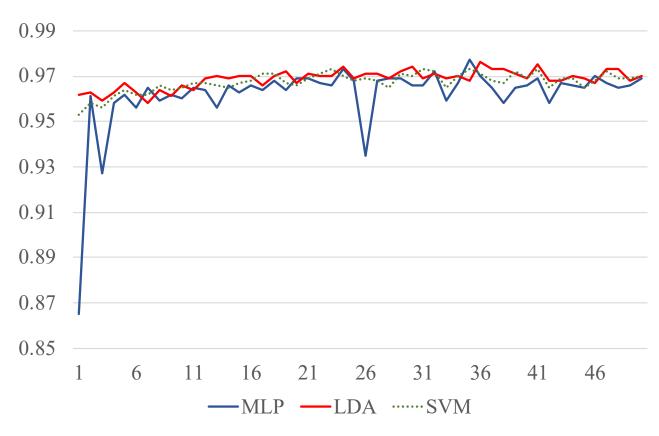
k: layer index

I: 2-D filter array

H: height of the filter

W: width of the filter

3.4. Classifier



Learning curves of MLP, LDA and SVM on Patch-100-Full dataset

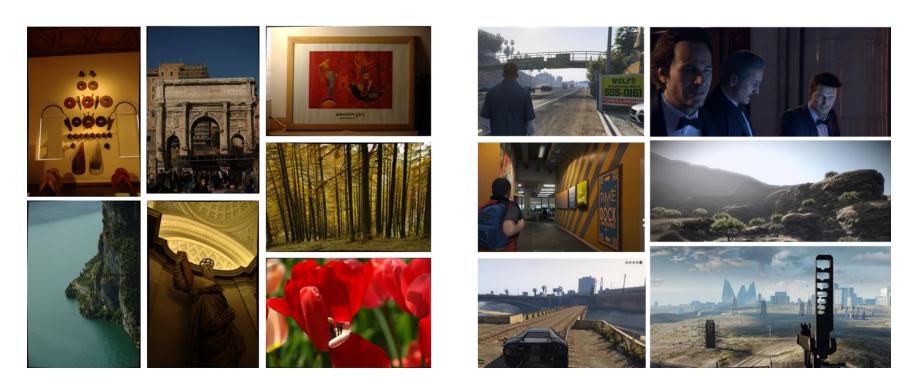
4.1. Datasets

Using only high-resolution images for training is not sufficient to counter real-world attacks.

→ We expanded the dataset proposed by Rahmouni et al. [8]

Name	No. for training	No. for valid.	No. for testing	Image size
Full-Size	2,520	360	720	High-resolution
Patch-100-Full	40,000	1,000	2,000	100 x 100
Patch-256-Full	40,000	1,000	2,000	256 x 256
Reduced-Size	2,520	360	720	360p
Patch-100-Reduced	40,000	1,000	2,000	100 x 100

4.1. Datasets



PIs [9] CGIs [10]

4.2. Patch aggregation

Q: Why dividing images into patches?

A:

- Input images are usually large, but:
 - → We need to analyze the patterns, however, resizing images might destroy this information.
 - → GPU computation could not afford large images.
- Can do parallel computing by using patches as batch input.

Q: How to compute the final result?

A: Calculate the mean of probabilities of selected patches.

4.2. Patch aggregation

Patch selection strategies:

Selecting all patches (left) vs. random sampling (right)

4.2. Patch aggregation

Classifier		MLP			LDA				
Patch size	No. of patches	1	2	3	Avg.	1	2	3	Avg.
100 x 100	10	99.31	99.72	99.86	99.63	99.86	99.31	99.72	99.63
	50	99.86	99.86	99.86	99.86	99.86	99.86	99.86	99.86
	100	99.86	99.86	99.86	99.86	99.86	99.86	99.86	99.86
	All				99.86				99.86
256 x 256	5	99.72	99.44	99.72	99.63	99.44	99.03	99.58	99.35
	10	100.0	99.72	100.0	99.91	99.86	99.58	99.72	99.72
	25	99.86	99.86	99.86	99.86	99.72	99.72	99.72	99.72
	All				99.86				99.72

4.3. Comparison

<u>Case 1</u>: High-resolution datasets

Method	Patch-100-Full	Patch-256-Full	Full-size
Rahmouni et al 100	86.10	x	96.94
Rahmouni et al 256	X	93.95	98.75
Proposed - MLP - 100	96.55	x	99.86
Proposed - LDA - 100	96.40	x	99.86
Proposed - MLP - 256	x	98.70	99.72 - 100.0
Proposed - LDA - 256	X	98.70	99.58 - 99.86

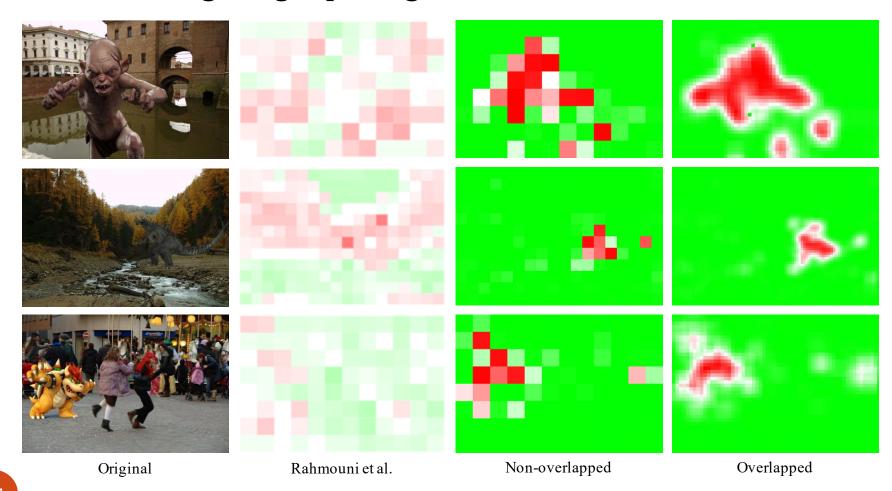
4.3. Comparison

<u>Case 2</u>: High- & low-resolution datasets

- (1) Train on high-res datasets \rightarrow test on both low- & high-res datasets
- (2) Re-train on mixed datasets \rightarrow test on both low- & high-res datasets

Method	Patch-100-Reduced	Reduced-Size	Patch-100-Full	Full-Size
Rahmouni et al. (1)	51.50	50.97	86.10	96.94
Proposed - MLP (1)	52.55	51.81	96.55	99.86
Proposed - LDA (1)	52.35	51.53	96.40	99.86
Rahmouni et al. (2)	60.45	79.72	81.20	95.00
Proposed - MLP (2)	88.60	96.67	93.40	97.64
Proposed - LDA (2)	89.95	97.92	94.80	98.89

4.4. Detecting image splicing



5. Conclusion & Future Work

5. Conclusion & Future Work

5.1. Conclusion

- The proposed method out-performed the method of Rahmouni et al. 2017 [8].
- Random sampling strategy is effective with large-scale images.
- The method can also be used to detect image splicing.
- Using only high-resolution images for training is not sufficient to counter real-world attacks.

5. Conclusion & Future Work

5.2. Future work

- Using adversarial training & evaluating with adversarial samples.
- Using more datasets: FaceForensics [7], 3D Mask Attach Dataset [11], ReplayAttack [12], Replay-Mobile [13].
- Using attention-based approach instead of patch aggregation.
- Comparing with more approaches.

- [7] Rössler, Andreas, et al. "FaceForensics: A Large-scale Video Dataset for Forgery Detection in Human Faces." arXiv preprint, 2018.
- [11] Erdogmus, Nesli, and Sebastien Marcel. "Spoofing in 2D face recognition with 3D masks and anti-spoofing with Kinect." BTAS 2013.
- [12] Chingovska, Ivana et al. "On the effectiveness of local binary patterns in face anti-spoofing." BIOSIG 2012.
- [13] Costa-Pazo, Artur, et al. "The replay-mobile face presentation-attack database." BIOSIG 2016.

Thank you for your attention