# Unsupervised speaker adaptation for DNN-based speech synthesis using input codes

Shinji Takaki<sup>1</sup>, Yoshikazu Nishimura<sup>2</sup>, Junichi Yamagishi<sup>1</sup>

<sup>1</sup> National Institute of Informatics <sup>2</sup> alt Inc.

# Background (1/2)

#### Statistical parametric speech synthesis

Remarkable progress thanks to DNNs

#### Flexible and controllable speech synthesis

- Speaker, gender, and age codes: "input codes" [Luong+; 16]
  - Multi-speaker modeling
  - Flexible manipulation
  - Speaker adaptation
- Speaker adaptation using back-propagation [Luong+; 16]
  - Speech and text data of a target speaker are required

Speaker adaptation using only speech data

# Background (2/2)

#### Speaker adaptation using a speaker-similarity vector

- Speaker-similarity vector : new speaker code
  - Text-independent ASV models are used
    - -Posterior probabilities are concatenated to form the code
  - The code represents acoustic similarity to speakers
- Inputting the estimated code of a target speaker can generate the target speaker's voice

# Speaker adaptation using low-quality speech data

- A robust ASV model is required
- Model training using artificially created low-quality speech
  - Alleviating recording condition mismatch between training and adaptation data

#### Multi-speaker modelling using input codes

#### Multi-speaker modelling using input codes

- Input codes: simple additional inputs that differentiate ID, gender and age of speakers
- Generate multiple speakers' voices from a single DNN
- Also good as an initial model for speaker adaptation
  - Input codes that use averaged values
    - → Average voice
- Allow us to manipulate speech
  - e.g. flip the gender code
- Morphing
  - Change the code each frame



Propagation

# Adaptation using input code: 'phantom code'

#### Estimate speaker code using adaptation data

- Estimation based on back-propagation [Bridle et al.; 90]
- Estimate the speaker code only, fix the other codes and other DNN parameters

#### Update procedures of the speaker codes

- Initialize the codes with the average
- Update the codes
  - Fixed maximum number of epoch:
  - Fixed learning rate
- Choose codes that has minimum errors
- Simple!!



# New speaker code: Speaker-similarity vector

#### Acoustic similarity to each of training speakers

- Replacing 1-hot vectors with speaker-similarity vectors
- Acoustic similarity is represented by posterior probability
  - Using text-independent ASV models
  - GMM-UBM or i-vector/PLDA is used



# Flow of the proposed technique

Step 1: ASV model training



Step 2 : code estimation



Step 3: synthesis model training



Step 4 : code estimation



Step 5: Speech synthesizing



Synthetic speech will vary if the speaker-similarity vector change,

# Training robust ASV model

# Adaptation data is usually low quality Training ASV models using low-quality data

- Alleviating recording condition mismatch
- Adding noise and reverberation to training speech data
  - An office room and a meeting room
  - Various SNRs
- Demand: Noise database [Thiemann+; 13]
- The Ace Challenge: Reverberation database [Hadad+; 14]
- Adaptation date is also artificially created
  - Office: ()) ()
     Meeting: ()) ()

High SNR ← Low SNR

# Experimental conditions (1/3)

| Multi-speaker |      |        |       | Adaptation |      |        |       |
|---------------|------|--------|-------|------------|------|--------|-------|
| Age           | Male | Female | Total | Age        | Male | Female | Total |
| 10-20         | 8    | 8      | 16    | 10-20      | 0    | 2      | 2     |
| 21-30         | 8    | 8      | 16    | 21-30      | 2    | 2      | 4     |
| 31-40         | 8    | 8      | 16    | 31-40      | 2    | 2      | 4     |
| 41-50         | 8    | 8      | 16    | 41-50      | 1    | 2      | 3     |
| 51-60         | 8    | 8      | 16    | 51-60      | 2    | 2      | 4     |
| 61-70         | 8    | 8      | 16    | 61-70      | 2    | 2      | 4     |
| 71-           | 8    | 8      | 16    | 71-        | 0    | 2      | 2     |
| Total         | 56   | 56     | 112   | Total      | 9    | 14     | 23    |

- High-quality Japanese speech database
- Training: 112 speakers, 100 utterances per speaker, total of 11,170 utterances
- Adaptation: 23 speakers, 100 utterances per speaker
- Test: 10 different sentences per speaker

#### Experimental conditions (2/3)

#### Acoustic features (speaker verification)

- 19-dim MFCC+ $\Delta + \Delta^2$  (MFCC)
- 19-dim WORLD mel-cepstrum+ $\Delta + \Delta^2$  (MGC)
- -20-dim F0 features  $+\Delta + \Delta^2$  (F0)
  - DCT is applied to F0 of prev., current and next 32 frames

#### Acoustic features (speech synthesis)

- 59-dim WORLD mel-cepstrum  $+\Delta + \Delta^2$
- Voiced/Unvoiced parameter, Log F0+ $\Delta$  +  $\Delta$ <sup>2</sup>
- 25-dim band apriodicity  $+\Delta + \Delta^2$

#### Input (speech synthesis)

- 386-dim linguistic features, oracle phone duration
- Speaker, gender and age codes

# Experimental conditions (3/3)

| Systems                                                            | Multi-speaker model                            | Adaptation             |  |
|--------------------------------------------------------------------|------------------------------------------------|------------------------|--|
| Averaged                                                           | One-hot vector                                 | _                      |  |
| Supervised                                                         | One-hot vector                                 | Vector estimated by BP |  |
| Unsupervised (g)                                                   | Speaker-similarity vec. estimated from GMM-UBM |                        |  |
| Unsupervised (i) Speaker-similarity vec. estimated form i-vector/P |                                                |                        |  |

- SIDEKIT was used to train ASV models
  - GMM-UBM (#mixtures : 8, 16, 32, 64, 128)
  - i-vector/PLDA
    - –The number of mixtures for extracting i-vector : 64
    - -i-vector dimension: 400
- Speech synthesis model
  - Feed forward DNN (Hidden layers : 5, units : 1024)

# Objective result



# Supervised < Unsupervised (g) < Averaged

- The proposed technique successfully performed speaker adaptation
- As expected, the results of supervised systems are better











# Experiments using low-quality speech data

#### SNR

- Training data: 2.5-, 7.5-, 12.5-, or 17.5-dB
- Adaptation data : 0.0-, 5.0-, 10.0-, or 15.0-dB

#### Quality types of training and adaptation data

| Training data | Adaptation data | Quality condition |
|---------------|-----------------|-------------------|
| CLEAN         | CLEAN           | ideal             |
| CLEAN         | OFFICE          | mismatched        |
| CLEAN         | MEETING         | mismatched        |
| OFFICE        | OFFICE          | matched           |
| MEETING       | MEETING         | matched           |

# Objective evaluation (1/2)

#### Matched condition



- The performance of i-vector/PLDA was almost the same in all SNR cases
  - i-vector/PLDA was robust for the proposed adaptation

# Objective evaluation (2/2)

#### Labels show conditions (Training/Adaptation)



- Ideal < matched < mismatched
  - Using speech data whose quality is matched to adaptation data for ASV model training improves the performance

# Objective evaluation (2/2)

#### Labels show conditions (Training/Adaptation)



- Ideal < matched < mismatched
  - Using speech data whose quality is matched to adaptation data for ASV model training improves the performance

# Subjective evaluation



#### Subjective evaluation



#### Conclusion

#### Unsupervised adaptation for speech synthesis

- Adaptation using a speaker-similarity vector
  - The proposed technique change the speaker characteristics
- Robustness against low-quality adaptation data
  - Using speech data whose quality is matched to adaptation data for model training improved the performance

#### Future work

- MP3 or AMR codec speech
- Speech recorded under real conditions