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Background (1/2)

Statistical parametric speech synthesis
— Remarkable progress thanks to DNNs

Flexible and controllable speech synthesis

— Speaker, gender, and age codes: “input codes” [Luong+; 16]
* Multi-speaker modeling
 Flexible manipulation
« Speaker adaptation
— Speaker adaptation using back-propagation [Luong+; 16]
« Speech and text data of a target speaker are required

Speaker adaptation using only speech data



Background (2/2)

Speaker adaptation using a speaker-similarity vector

— Speaker-similarity vector : new speaker code

» Text-independent ASV models are used
—Posterior probabilities are concatenated to form the code
* The code represents acoustic similarity to speakers

— Inputting the estimated code of a target speaker can
generate the target speaker’s voice
Speaker adaptation using low-quality speech data
— A robust ASV model is required

— Model training using artificially created low-quality speech

» Alleviating recording condition mismatch between training
and adaptation data



Multi-speaker modelling using input codes

Multi-speaker modelling using input codes

— Input codes: simple additional inputs that differentiate ID,
gender and age of speakers

— Generate multiple speakers’ voices from a single DNN

— Also good as an initial model for speaker adaptation
* Input codes that use averaged values |
_ Propagation
— Average voice ~

— Allow us to manipulate speech Text|™ EE
- e.g. flip the gender code Speaker code NN =
— Morphing Gender code E.?:
* Change the code each frame Age code §




Adaptation using input code: ‘phantom code’

Estimate speaker code using adaptation data
— Estimation based on back-propagation [Bridle et al.; 90]

— Estimate the speaker code only, fix the other codes and other
DNN parameters

Update procedures of the speaker codes
— Initialize the codes with the average
— Update the codes [Q Q Q] A
* Fixed maximum number of epoch:
 Fixed learning rate
— Choose codes that has minimum errors
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New speaker code : Speaker-similarity vector

Acoustic similarity to each of training speakers
— Replacing 1-hot vectors with speaker-similarity vectors

— Acoustic similarity is represented by posterior probability
 Using text-independent ASV models
« GMM-UBM or i-vector/PLDA is used
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Flow of the proposed technique

Step 1: ASV model tralnlng Step 3 : synthesis model training
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Training robust ASV model

Adaptation data is usually low

quality

Training ASV models using low-quality data
— Alleviating recording condition mismatch

— Adding noise and reverberation to training speech data
 An office room and a meeting room

e Various SNRs

— Demand : Noise database [Thiemann+; 13]
— The Ace Challenge : Reverberation database [Hadad+; 14]

— Adaptation date is also artificia
* Meeting : [j:‘ [j: [
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Experimental conditions (1/3)

Multi-speaker Adaptation

Age Male Female Total Age Male Female Total
10-20 8 8 16 10-20 0 2 2
21-30 8 8 16 21-30 2 2 4
31-40 8 8 16 31-40 2 2 4
41-50 8 8 16 41-50 1 2 3
51-60 8 8 16 51-60 2 2 4
61-70 8 8 16 61-70 2 2 4

71- 8 8 16 71- 0 2 2
Total 56 56 112 Total 9 14 23

— High-quality Japanese speech database
— Training: 112 speakers, 100 utterances per speaker, total

of 11,170 utterances
— Adaptation: 23 speakers, 100 utterances per speaker

— Test: 10 different sentences per speaker




Experimental conditions (2/3)

Acoustic features (speaker verification)
— 19-dim MFCC+A + A? (MFCC)
— 19-dim WORLD mel-cepstrum+A + A2 (MGC)
— 20-dim FO features +A + A? (FO0)
* DCT is applied to FO of prev., current and next 32 frames
Acoustic features (speech synthesis)
— 59-dim WORLD mel-cepstrum+A + A?
— Voiced/Unvoiced parameter, Log FO+A + A?
— 25-dim band apriodicity +A + A?
Input (speech synthesis)
— 386-dim linguistic features, oracle phone duration
— Speaker, gender and age codes



Experimental conditions (3/3)

Systems Multi-speaker model Adaptation
Averaged One-hot vector -
Supervised One-hot vector Vector estimated by BP
Unsupervised (g) Speaker-similarity vec. estimated from GMM-UBM
Unsupervised (i) | Speaker-similarity vec. estimated form i-vector/PLDA

— SIDEKIT was used to train ASV models
« GMM-UBM (#mixtures : 8, 16, 32, 64, 128)
* i-vector/PLDA
—The number of mixtures for extracting i-vector : 64
—i-vector dimension: 400
— Speech synthesis model
* Feed forward DNN (Hidden layers : 5, units : 1024 )
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Objective result
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— The proposed technique successfully performed speaker

adaptation

— As expected, the results of supervised systems are better
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Subjective evaluation results
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Subjective evaluation results

3.0

B 10utt
- 50utt
B 100utt

GMM GMM i — vec i — vec
(MFCC) (MFCC + FO) (MFCC) (MFCC + FO0)

Naturalness

Supervise

2.3

i
Supervise GMM GMM i — vec i — vec
(MFCC) (MFCC + FO) (MFCC) (MFCC + FO0)

Speaker similarity

18



Subjective evaluation results
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Subjective evaluation results
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Subjective evaluation results
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Experiments using low-quality speech data

SNR
— Training data : 2.5-, 7.5-, 12.5-, or 17.5-dB
— Adaptation data : 0.0-, 5.0-, 10.0-, or 15.0-dB

Quality types of training and adaptation data

Training data Adaptation data  Quality condition

CLEAN CLEAN ideal
CLEAN OFFICE mismatched
CLEAN MEETING mismatched
OFFICE OFFICE matched

MEETING MEETING matched
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Obijective evaluation (1/2)

Matched condition
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— The performance of i-vector/PLDA was almost the same
in all SNR cases

* i-vector/PLDA was robust for the proposed adaptation
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Obijective evaluation (2/2)

Labels show conditions (Training/Adaptation)
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» Using speech data whose quality is matched to adaptation
data for ASV model training improves the performance
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Obijective evaluation (2/2)

Labels show conditions (Training/Adaptation)
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» Using speech data whose quality is matched to adaptation
data for ASV model training improves the performance
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Subjective evaluation
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Subjective evaluation
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Conclusion

Unsupervised adaptation for speech synthesis

— Adaptation using a speaker-similarity vector

* The proposed technique change the speaker
characteristics

— Robustness against low-quality adaptation data

» Using speech data whose quality is matched to adaptation
data for model training improved the performance

Future work

— MP3 or AMR codec speech
— Speech recorded under real conditions
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