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Background
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Presentation attacks have been carried out with:

printed fingerprint

… also replayed voice

printed iris
(unlock a smart phone)

https://www.gizmodo.jp/20
15/01/post_16271.html

https://www.theregister.co.uk/201
3/09/22/iphone_5_touchid_broke
n_by_chaos_computer_club/

https://www.youtube.com/watch?v=lOwuddvzl2A

https://www.youtube.com/watch?v=InOmTxmq1Ik



Presentation attack detection and voice biometric system
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ASVspoof challenge 2017:
• A competition for replayed voice detection
• More than 40 teams joined
• Evaluation using the same database 



Categories of the playback spoofing CM
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Category Example Disadvantage

1
Random pass-phrase
(challenge response)

Randomly promoting pass-phrase
[T. Kinnunen ’18, H. Zeinali ’18]

Arbitrary phrase can be 
created if an attacker 
has sufficient data

2 Rule-based
Pop-noise exists?
[S. Mochizuki ’18]

Rules are difficult to 
design and implement

3 Audio fingerprinting 
Incoming recording = recordings used 
for authentication?
[J. Gonzalez-Rodriguez ’18]

One billion users × #of 
test trials

4 Machine learning-based

Learning the difference between 
human and playback speech
[C. Wang ’16, T. Kinnunen ’17, G. 
Lavrentyeva ’17]

Assumption: attackers 
have no special 
knowledge



Proposed threat model
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Playback spoofing CM

ASV module

Playback

Re-recording

Online

Offline

Speech
transformation

Noise ①

Recording device noise

Noise ③

Authentication

Stolen by talking to, hacking, 
downloading …

Cleaner speech

• Reduce environment noise and reverberation included in stolen speech
• Replay cleaner speech to the voice biometric system 

Without 
transformation



GMM-UBM-based ASV to be attacked
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• A classical GMM-UBM-based method: suit for short duration utterance-based verification

Test
phase

Train
phase

Large amount 
of speech data

Training
Enrollment

(MAP adaptation)

GMM-UBM
(universal background model)

Target speaker’s
GMM

Small data of
target speaker

Step 1 Step 2

Likelihood

Accept/reject ?

Target speaker’s
GMM

GMM-UBM

Likelihood



Playback spoofing CMs to be attacked
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• CQCC+GMM-based method
(baseline of ASVspoof 2017)

• Light CNN (LCNN)-based method
(best method of ASVspoof 2017)

EER = 30.60%
[T. Kinnunen et al., 2017]

EER = 7.37%
[G. Lavrentyeva et al., 2017]

Step 1

Step 2

Extractor

Classifier
(GMM)

CQCC
(acoustic feature)

Genuine/playback?

Step 1

Step 2

STFT

Classifier
(LCNN)

Spectrogram
(acoustic feature)

Genuine/playback?

Convolution, 
max-pooling, 

max-out

Short-time Fourier 
transformation



Technique used by attackers: SEGAN
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• Speech enhancement generative adversarial network (SEGAN) [S. Pascual et al., 2017] 
• Originally proposed for end-to-end speech enhancement

Noise speech

Cleaner speech

Generator

Discriminator

Target data

Source data

Generated data

OR

Real/fake?

Generative adversarial net [Goodfellow, ‘14]
Generates data by fooling discriminator



Databases for training and evaluation
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Playback spoofing CM

ASV module

Playback

Re-recording

Online

Offline

Speech
transformation

Authentication

ASVspoof2017
train+dev sets

TIMIT + RSR2015 + RedDots

1. Clean VCTK + Replayed VCTK
2. Clean VCTK + Noisy VCTK

ASVspoof2017
eval genuine 1/2set

ASVspoof2017
eval genuine 1/2set



Playback attack setup
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• Four types of loudspeakers and six types of microphones used for re-recording

High quality

Medium 
quality

Low quality

iPhone 6s

* All is portable

High
quality

Low
quality

iPhone 6s
mic

iPad
mic

Directional
mic

MacBook

Loudspeaker
Speaker
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Spoofing measures 

• t-DCF is a version of expanded DCF [T. Kinnunen et al., 2018]
• Considers both CM and ASV
• Higher t-DCF value = less reliable

Playback spoofing 
countermeasure

(CM)

Automatic speaker 
verification

(ASV)

Voice biometric systemPAD

Equal error rate (EER) measures CM

“t-DCF” measures the whole system

Case 1:

Case 2:
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Spoofing against CMs (EERs averaged across microphones)
Conventional attack Replayed VCTK Noisy VCTK
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Spoofing performance against CM&ASV
(averaged t-DCF across microphones)

Conventional attack Replayed VCTK Noisy VCTK
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Conclusion and future work

• Proposed a playback attack method: pre-transforming speech before replay

• Increased EERs of both CQCC+GMM and LCNN-based playback spoofing CMs

• Increased t-DCF values obtained by playback spoofing CM and ASV system

• Plan to develop a robust CM against multiple transformation techniques 
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