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Background

Presentation attacks have been carried out with:

guten Tag, mein Name ist
Dr. von der Leyen
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printed fingerprint

... also replayed voice
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Presentation attack detection and voice biometric system

User
Playback spoofing Automatic speaker
countermeasure verification
(CM) (ASV)
Loud PAD Voice biometric system
speaker

ASVspoof challenge 2017:

* A competition for replayed voice detection
 More than 40 teams joined

* Evaluation using the same database



Categories of the playback spoofing CM

Category

1 Random pass-phrase
(challenge response)

Example

Randomly promoting pass-phrase
[T. Kinnunen ’18, H. Zeinali '18]

Disadvantage

Arbitrary phrase can be
created if an attacker
has sufficient data

2 Rule-based

Pop-noise exists?
[S. Mochizuki '18]

Rules are difficult to
design and implement

3 Audio fingerprinting

Incoming recording = recordings used
for authentication?
[J. Gonzalez-Rodriguez '18]

One billion users X #of
test trials

4 Machine learning-based

Learning the difference between
human and playback speech

[C. Wang ’16, T. Kinnunen 17, G.
Lavrentyeva "17]

Assumption: attackers
have no special
knowledge




Proposed threat model

* Reduce environment noise and reverberation included in stolen speech
* Replay cleaner speech to the voice biometric system
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GMM-UBM-based ASV to be attacked

e A classical GMM-UBM-based method: suit for short duration utterance-based verification
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Playback spoofing CMs to be attacked

e CQCC+GMM-based method
(baseline of ASVspoof 2017)
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(acoustic feature)
}
Step 2

Genuine/playback?

EER = 30.60%
[T. Kinnunen et al., 2017]

e Light CNN (LCNN)-based method

(best method of ASVspoof 2017)
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Short-time Fourier

Step 1 transformation
Spectrogram
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Step 2 '
max-pooling,
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Genuine/playback?

EER=7.37%
[G. Lavrentyeva et al., 2017]



Technigue used by attackers: SEGAN

* Speech enhancement generative adversarial network (SEGAN) [S. Pascual et al., 2017]
* Originally proposed for end-to-end speech enhancement
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Databases for training and evaluation

TIMIT + RSR2015 + RedDots

ASV module
Playback spoofing CM
A
B Re-recording
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Speech
transformation

1. Clean VCTK + Replayed VCTK

2. Clean VCTK + Noisy VCTK



Playback attack setup

* Four types of loudspeakers and six types of microphones used for re-recording

Loudspeaker Speaker iPhone 6s Low High iPad
mic quality quality mic
High quality
Directional
mic
Medium
quality
Low quality =
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iPhone 6s ]
MacBook 10

* All is portable



Spoofing measures

Case 1l: Equal error rate (EER) measures CM
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Case 2: “t-DCF” measures the whole system

* t-DCF is a version of expanded DCF [T. Kinnunen et al., 2018]
 Considers both CM and ASV

* Higher t-DCF value = less reliable



Spoofing against CMs (EERs averaged across microphones)
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Spoofing performance against CM&ASV
(averaged t-DCF across microphones)
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Conclusion and future work

Proposed a playback attack method: pre-transforming speech before replay
Increased EERs of both CQCC+GMM and LCNN-based playback spoofing CMs
Increased t-DCF values obtained by playback spoofing CM and ASV system

Plan to develop a robust CM against multiple transformation techniques
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