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1 Introduction
• Neural waveform generators are used in state-of-the-art TTS
• Problem: sample-by-sample synthesis with WaveNet is slow, par-

allel models are heavy and difficult to train
• Generative models are required to capture the stochastic compo-

nents in the speech waveform
• GANs are promising, but have suffered from training instability

2 Text-to-speech synthesis system

• Some speech processing can
make neural vocoding more
manageable:

- Use spectral envelope to re-
move vocal tract resonances
(glottal inverse filtering)

- Use pitch marking to create
phase-locked waveform rep-
resentations

- Use generative neural
nets as excitation model

• Front-end and acoustic
model are as in conventional
neural net based statistical
parametric speech synthesis
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3 GAN waveform model
Multi-scale GAN architecture

Progressive upsampling in Generator
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Multi-scale GAN architecture
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Training criteria

Wasserstein GAN: x is real data and x̂=G(z,c) at all timescales

L W
D =−Ex∼pD [D(x,c)]+Ex̂∼pG [D(x̂,c)] , (1)

with gradient penalty for a smooth Discriminator

L GP
D = Ex∼pD,x̂∼pG

[
(max{0,‖∇x̃D(x̃,c)‖−1})2] , (2)

and regularization for large gradients in the data manifold

L R1
D = Ex∼pD

[‖∇xD(x,c)‖2] . (3)

Spectral magnitude matching for the Generator

L FFT
G = E

[
(|FFT(xn)|− |FFT(x̂n)|)2] . (4)

Sound samples
https://users.aalto.fi/~ljuvela/multiscale-gan/

Source code (TensorFlow)
https://github.com/ljuvela/multiscale-GAN

4 Listening tests
• TTS systems trained on Jenny (4.7h) and Nick (1.8h)

datasets
• Difference mean opinion score (DMOS) test for speaker

similarity
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• Category comparison rating (CCR) test to evaluate quality
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• The proposed method can match a WaveNet vocoder
in TTS quality
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