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1 Introduction

* Neural waveform generators are used in state-of-the-art TTS

* Problem: sample-by-sample synthesis with WaveNet is slow, par-
allel models are heavy and difficult to train

* Generative models are required to capture the stochastic compo-
nents in the speech waveform

* GANs are promising, but have suffered from training instability
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3 GAN waveform model

Multi-scale GAN architecture

Progressive upsampling in Generator
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Multi-scale GAN architecture Generator block

Training criteria

Wasserstein GAN: x i1s real data and & = G(z,c) at all timescales
Lp = ~Erp, ID(@, 01+ Eep, [D(E,0)], (1)
with gradient penalty for a smooth Discriminator
Ly = Erpyi-pe [(0ax{0, V2D (&, 0 - 11)?], (2)
and regularization for large gradients in the data manifold
Ly =Eep, [IV=D(x,0%]. (3)
Spectral magnitude matching for the Generator

L't =E[(IFFT(x,)| — |[FFT(£,)])?]. (4)

Sound samples
https://users.aalto.fi/~ljuvela/multiscale-gan/

Source code (TensorFlow)
https://github.com/ljuvela/multiscale-GAN

E-mail: lauri.juvela@aalto.fi

4 Listening tests

* TTS systems trained on Jenny (4.7h) and Nick (1.8h)
datasets

* Difference mean opinion score (DMOS) test for speaker
similarity

Jenny voice similarity Nick voice similarity
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e Category comparison rating (CCR) test to evaluate quality
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* The proposed method can match a WaveNet vocoder
in TTS quality
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