Capsule-Forensics: Using Capsule Networks to Detect Forged Images and Videos

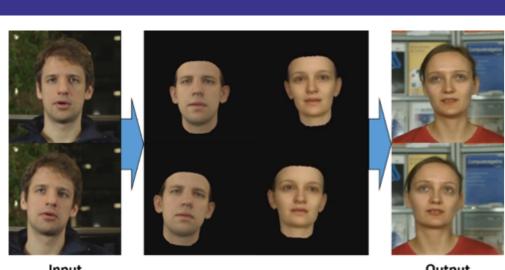
Huy H. Nguyen (SOKENDAI, Japan)

Junichi Yamagishi (NII, Japan)

Isao Echizen (NII, Japan)

Generating of Fake Videos Impersonating a Person Using Deep Learning

Face2Face: Real-time facial reenactment (Thies et al. 2016)



Deep Video Portraits: Face2Face + Translating head poses (Kim et al. 2018)

Deepfakes Video face swapping (2017)

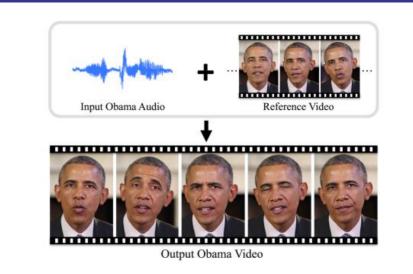
Bringing portraits to life (Averbuch-Elor et al. 2017)

2D-conv + stats

pooling + 1D conv

2D-conv + stats

pooling + 1D conv



Synthesizing Obama: Learning lip sync from audio (Suwajanakorn et al. 2017)

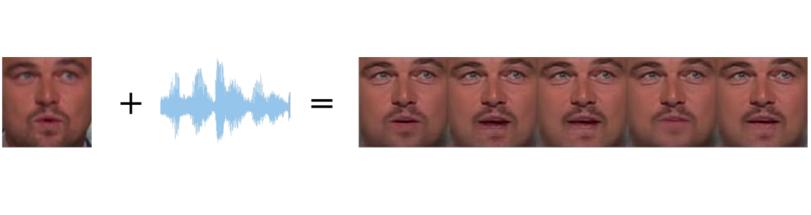
Output capsule

Real image

capsule ($\mathbf{v}^{(1)}$)

Fake image

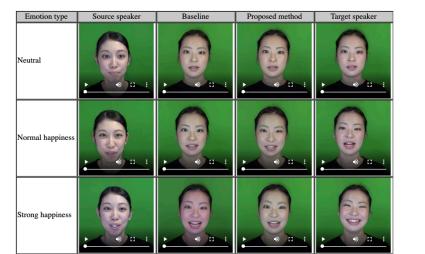
capsule ($\mathbf{v}^{(2)}$)



Real

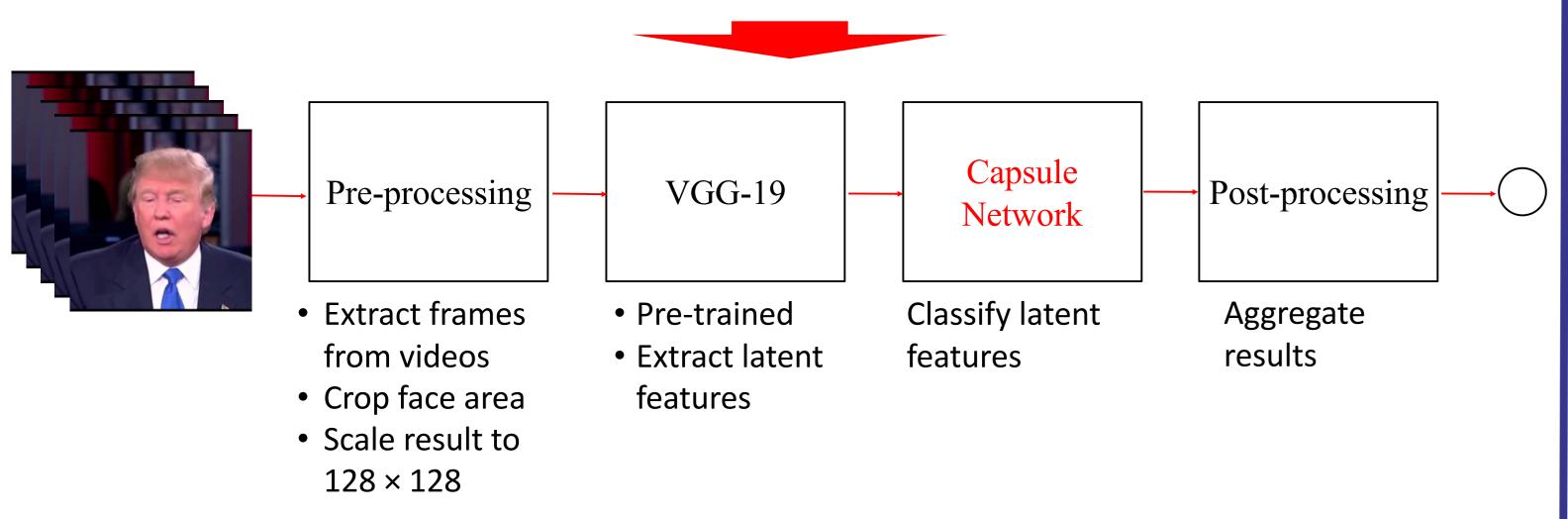
Score

Speech2Vid (Chung et al. 2017)



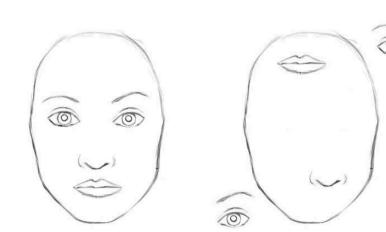
Audiovisual speaker conversion (Fang et al. ICASSP 2019)

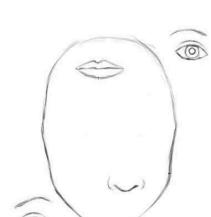
- Deep learning methods enable non-expert users with ordinary PCs to create realistic forged images and videos by using data available on social networks.
- Materials required for generating fake videos have been simplified over time.
- Forgery detectors need to be regularly updated to deal with
- New kind of attacks
- Better quality forged images/videos
- > Is there a general framework that could be applied for any kind of attack???



CNN vs. Capsule Network

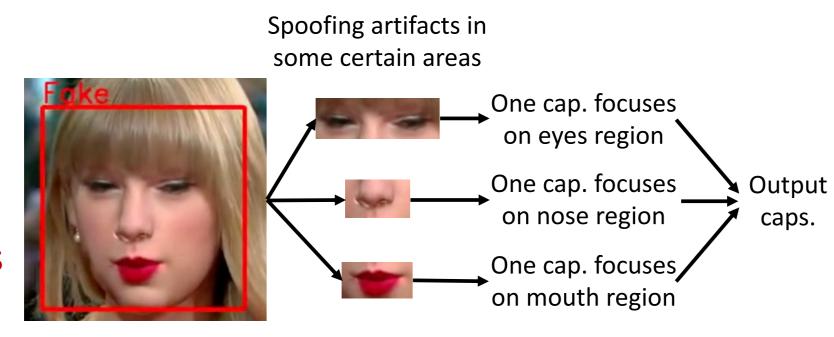
 In computer vision perspective, convolutional neural networks (CNNs) has viewpoint invariant property but lacking of information about relative spatial relationships between features \rightarrow Capsule network can solve this problem.



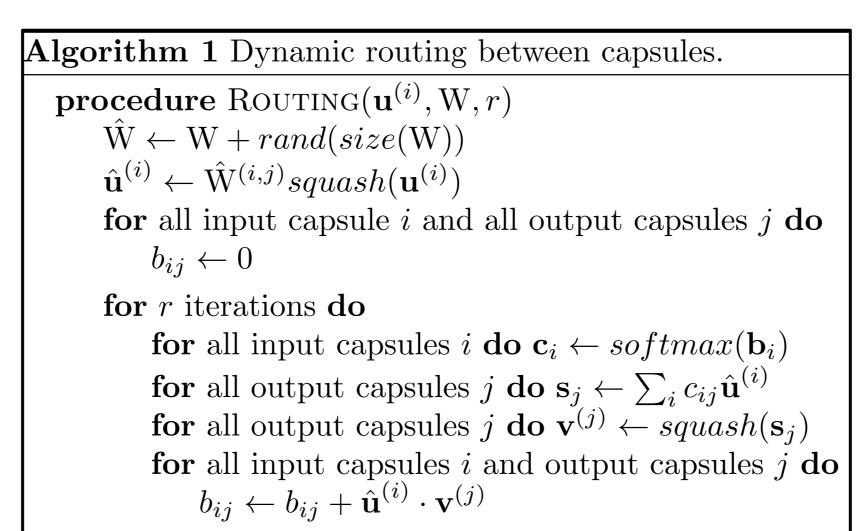


The two pictures are similar in the perspective of a CNN but dissimilar in the view of a capsule network. Source: Max Pechyonkin.

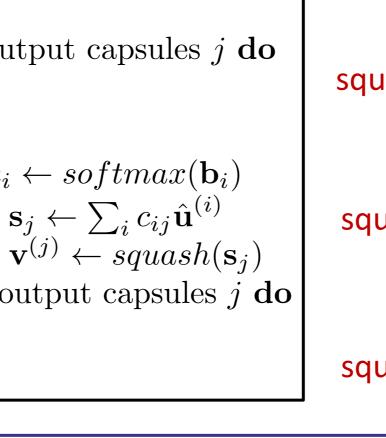
- Capsule networks have several capsules, each capsule is a CNN learning some specific representations.
- The agreements between low-level capsules decides the activations of the high-level capsules.
- In digital image forensics perspective, each low-level capsule may capture some specific representations of spoofing artifacts in some certain area, or some specific kind of irregular noises created by presentation attacks.



Capsule Network Primary capsule Dynamic 2D-conv + stats routing pooling + 1D conv



VGG-19



Routing matrix Scalar weight **Primary** Output (+ Gaussian noise calculated by dynamic capsule capsule in training) routing algorithm

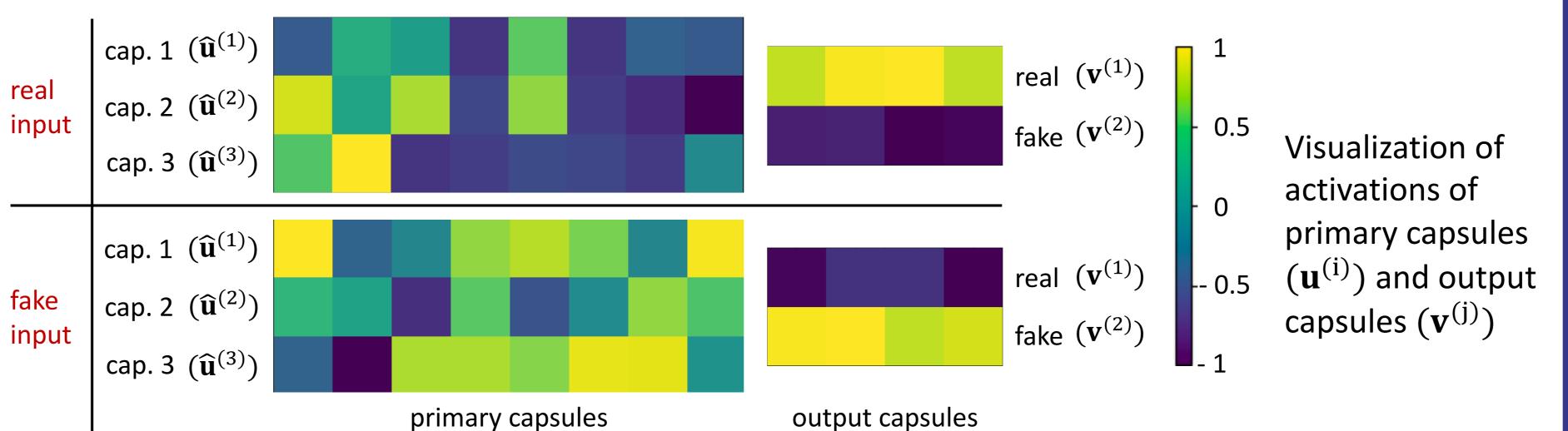
Squash function, used to scale vector magnitude to unit length:

$$\operatorname{squash}(\mathbf{u}) = \frac{\|\mathbf{u}\|_2^2}{1 + \|\mathbf{u}\|_2^2} \frac{1}{\|\mathbf{u}\|_2}$$

 $\mathbf{return} \ \mathbf{v}^{(j)}$

Score function, used to determine the predicted label probabilities:

$$\hat{\mathbf{y}} = \frac{1}{m} \sum_{i} \operatorname{softmax} \left(\begin{bmatrix} \mathbf{v}^{(1)} \mathbf{T} \\ \mathbf{v}^{(2)} \mathbf{T} \end{bmatrix}_{:,i} \right)$$



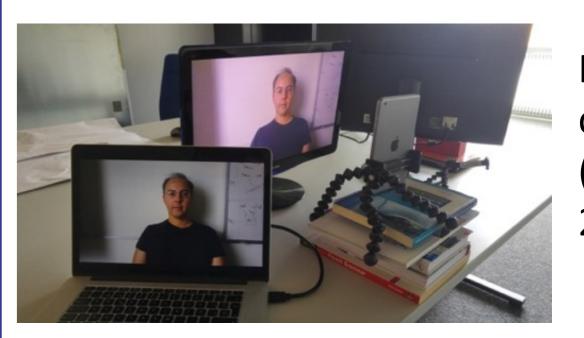
Evaluation

Type of Attack	Detection Accuracy (%)
Replay Attack	100.00 *
CG vs. Natural Images	100.00 *
Deepfakes (Frames)	95.93 *
Deepfakes (Video)	99.23 *
Face2Face (c0 - Frames)	99.37
Face2Face (c0 - Video)	99.33
Face2Face (c23 - Frames)	96.50
Face2Face (c23 - Video)	96.00
Face2Face (c40 - Frames)	81.00
Face2Face (c40 - Video)	83.33
Face2Face (c40 - Frames)	81.00

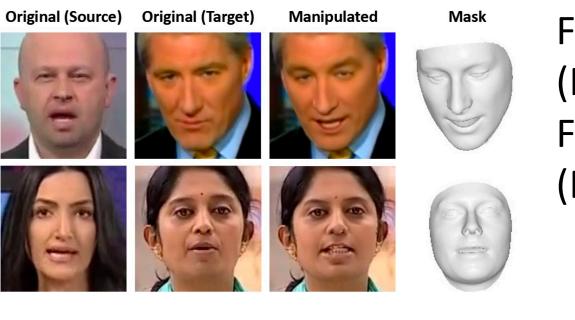
Note:

- c0, c23, c40: H264 compression levels
- number *: state-of-the-art result

Some examples from the evaluation datasets:



Idiap Replay Attack database (Chingovska et al. 2012)



Facial reenactment (Face2Face) in the FaceForensics database (Rössler et al. 2018)

