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Aim: Solving 3 problems simultaneously:

1. Identifying manipulated images/videos (PAD à classification).

2. Specifying manipulated regions (tampering detection à segmentation).

3. Detecting unseen attacks (transferability/cross-database detection).

Solution:

• Combining classification (real or fake), segmentation (tampering detection), and 
image reconstruction in a single network à multi-task learning.

à Sharing mutual information between tasks to improving the overall performance.

• Giving more information to judge the origin of the input (real or fake).

Face2Face: Real-time
facial reenactment
(Thies et al. 2016)

Bringing portraits to life
(Averbuch-Elor et al. 2017)

Synthesizing Obama:
Learning lip sync from audio
(Suwajanakorn et al. 2017)

Speech2Vid
(Chung et al. 2017)

Generating of Fake Videos Impersonating a Person Using Deep Learning

Deepfakes
Video face swapping

(2017)
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Network Architecture Evaluation

Realistic Neural Talking 
Head Models

(Zakharov et al. 2019)

Text-based Editing of 
Talking-head Video
(Fried et al. 2019)
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Overview

Example of a natural image and three corresponding manipulations: Deepfakes, 
Face2Face, and FaceSwap.
à Based on segmentation result, we can infer the manipulated method.

Type of attack Database
(Medium compression)

Classification Segmentation

Accuracy (%) EER (%) Accuracy (%)

Match condition of 
seen attack 

FaceForensics
(Face2Face)
Source-to-target

92.77 8.18 90.27

Mismatch condition 
of seen attack

FaceForensics
(Face2Face)
Self-reenactment

92.50 8.07 90.20

Unseen attack 1 
(without fine-tuning)

FaceForensics++
Deepfakes 52.32 42.24 70.37

Unseen attack 2 
(without fine-tuning)

FaceForensics++
FaceSwap 54.07 34.04 84.67

Unseen attack 2 (fine-
tuning on small data)

FaceForensics++
FaceSwap 83.71 15.07 93.01

Latent features are divided into two 
halves. The one with stronger 
activation will go through the 
decoder. The other one will be silent.

An example of detection and 
segmentation result on a video 
frame of the former US president 
Barack Obama modified by 
Face2Face method. 
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