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End-to-end text-to-speech synthesis
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Proposed end-to-end TTS methods

System Network
Char2Wav [1] RNN

Tacotron [2] RNN
VoiceLoop [3] Memory buffer
Deep Voice 3 [4] CNN

Tacotron 2 [5] RNN

Transformer [6]

Self-attention

Alignment

GMM
Additive
GMM

Dot-product
Location-sensitive

Decoder output

Post-net output

Vocoder
Mel
Vocoder
Mel
Mel
Mel

Linear
Linear/Vocoder
Mel

Mel

All methods use soft attention
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Problems of soft attention:
Fatal alignment errors

Mode split
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Problems of soft attention:
Fatal alignment errors

DeepVoiced [4]

Text Input

Attention

Inference constraint

Repeat Mispronounce SKip

Characters-only
Phonemes & Characters
Phonemes & Characters
Phonemes & Characters

Dot-Product
Dot-Product
Dot-Product

Monotonic

Transformer TTS [7]

Yes
No
Yes
No

3 35 19
12 10 15
1 4 3
5 9 11

Method Repeats | Skips | Error Sentences | Error Rate
Transformer TTS 7 15 17 34%
FastSpeech 0 0 0 0%

[4] W. Ping et al., ICLR, 2018.

[7] Y. Ren et al., CoRR, vol. abs/1905.09263, 2019 5




Design of the proposed method:
SSNT based TTS

e Alignment structure is designed to be monotonic
e Alignment method is hard attention, instead of soft
e Alignment is a latent variable, part of probabilistic model

e Based on SSNT (Segment-to-Segment Neural
Transduction) [8]
e Output distribution is continuous, instead of discrete

[8] L.Yu et al., EMNLP, 2016.. 6



End-to-end TTS as a probabilistic model

Linguistic feature —>

L1
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Alignment as a latent variable
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Factorization for joint probability of alignment and

output

p(ylzJ ‘ CE‘l;[) — Zp(yLJ?Z ‘ 5131;[)
Vz

Factorization for joint probability

of alignment and output
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Definition of alignment transition variables

J
Hp(zj | Zj—laylzj—lawllf)p(yj | y1:j—1azj,-’31:1)
j=1
Alignment probability Output probability
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Definition of alignment probability

Hp(zj | Zj—laylzj—lawl:f)p(yj |y1:j_1,Zj,$1;[)

=1

Alignment probability

Output probability

Probability when an
alignment reaches input
position / at timestep j

p(z; =1 | Zj—layl:j—lawlzI) =
(0
p(a;; = Emit)

p(ai_l,j = Shlft)p(az,J = Emit)
0
\

Decoder timesteps

Encoder timesteps

11



Definition of output probability

Hp(z] | zj—laylzj—lawl:f)p(yj | yl:j—lazjamlzl)

J=1 e

Alignment probability Output probability

We used isotropic Gaussian distribution.

p(yj | yl:j—lazjamlzl) — N(yj§HaU2I)
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Training (1): Objective function

Maximize p(yLJ | m1;1)

L(0) = —logp(y,.; | ©1:1;6)
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Training (2): Marginalization of alignments by
forward probability

L(0) =—logp(y,.; | ©1.1;0)
= = Zp(ylzjaz | @1:1)
Yz

= —loga(l,J)
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Network structure

Decoder
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Inference (1): Alignment prediction

*Greedy decode  k = argmax (p(Zj =1 2z_1, yl:j—lamlzl))
Zj — Zj—1 + k or

*Random sampling k ~ Bernoulli (p(zj =1 | 21, Y11 :131;1))

‘ ‘ p(ai—1,; = Shift)p(a; ; = Emit)

Ai—1,j = Shift\:»A

Ti—1 | ? k\.
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Inference (2): Stop criteria

e \When alignment reaches the final position of input
e No stop flag prediction
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Experiments: listening test about naturalness
Data

ATR Ximera (Japanese, Single speaker, 46.9h, 28,959
utterance)

Linguistic feature: Phoneme (No accentual type label)
Acoustic feature: Mel spectrogram (12.5 ms frame shift)
Train/Validation/Test: 27,999/480/480

Waveform synthesis: WaveNet

Evaluation

Listening test about naturalness
Listeners: 104
Evaluation values: 19,200

S systems
o Natural, ABS, SA Tacotron, Tacotron, SSNT (Proposed)
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Experimental results: underperform baselines

[ analysis by synthesis [ Tacotron [l proposed system
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Analysis of generated samples

e Different kinds of alignment errors
o Underestimation of duration

o Overestimation of duration

Predicted alignment

Predicted spectrogram

Ground truth spectrogram

Alignment

0 50 100 150 200 250 300
Predicted mel spectrogram
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Conclusion

e A new end-to-end TTS method
o Monotonic alignment structure by design
o Hard attention instead of soft attention
o Alignment is a latent variable
o QObjective function is likelihood of marginal probability
o Alignment can be sampled from learned distribution
e Low naturalness of synthetic speech
o No fatal alignment errors
o Underestimation and overestimation of duration
e Future perspective
o Testing various alignment distribution and sampling
methods
o Covariance estimation of output probability
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Audio samples
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Efficient gradient calculation of objective function

Ologp(yy.s | ©1:1;0)

00
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The relationship 8p(ng(|. w_;’l; ) = 3(i,7) is used.
a(t, 7
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