

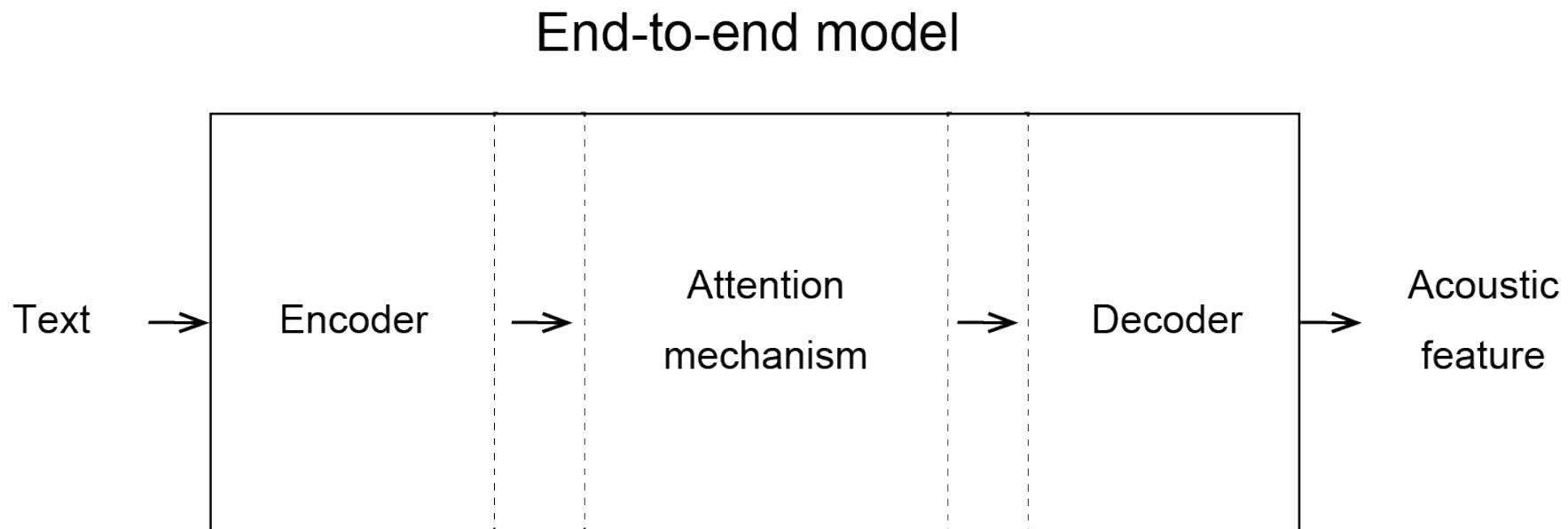
Initial investigation of an encoder-decoder end-to-end TTS framework using marginalization of monotonic hard latent alignments

Yusuke Yasuda, Xin Wang, Junichi Yamagishi
NII, Japan

14:00, 9/22, SSW10, 2019

Oral Session 6: Sequence to sequence model

End-to-end text-to-speech synthesis



Proposed end-to-end TTS methods

System	Network	Alignment	Decoder output	Post-net output
Char2Wav [1]	RNN	GMM	Vocoder	-
Tacotron [2]	RNN	Additive	Mel	Linear
VoiceLoop [3]	Memory buffer	GMM	Vocoder	-
Deep Voice 3 [4]	CNN	Dot-product	Mel	Linear/Vocoder
Tacotron 2 [5]	RNN	Location-sensitive	Mel	Mel
Transformer [6]	Self-attention	Dot-product	Mel	Mel

All methods use soft attention

[1] J. Sotelo et al., ICLR, 2017.

[2] Y. Wang et al., Interspeech, 2017.

[3] Y. Taigman et al., ICLR, 2018.

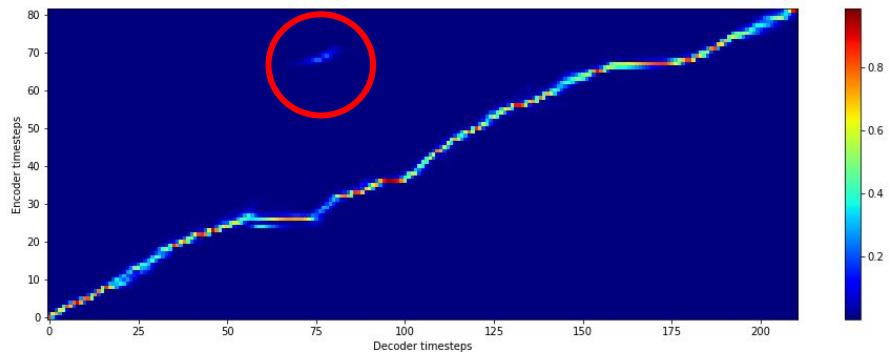
[4] W. Ping et al., ICLR, 2018.

[5] J. Shen et al., ICASSP, 2018.

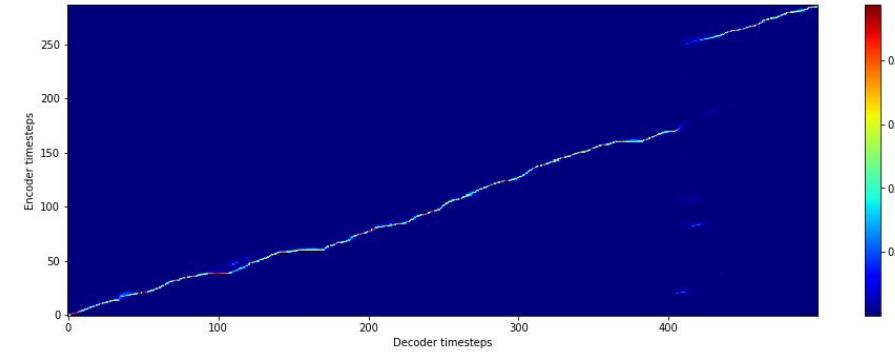
[6] N. Li et al., CoRR, vol. abs/1809.08895, 2018.

Problems of soft attention: Fatal alignment errors

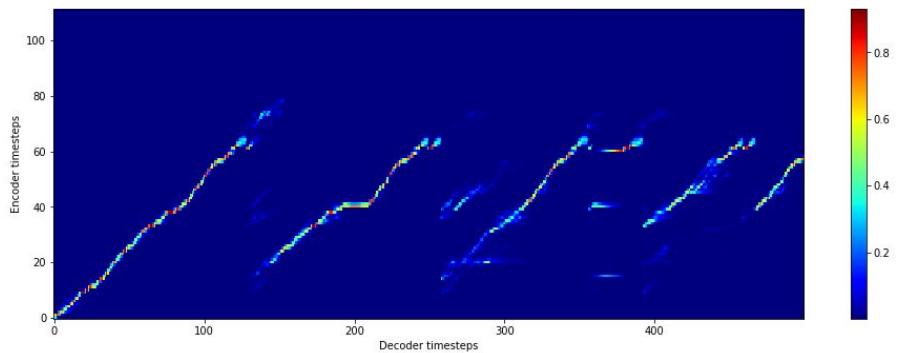
Mode split



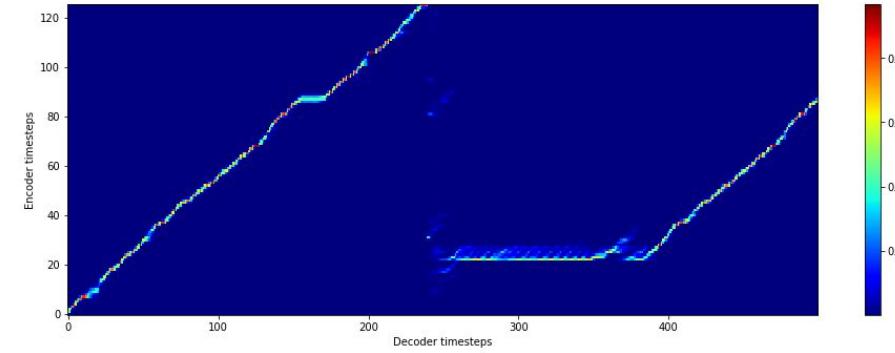
Skip



Repeat



Late termination



Problems of soft attention: Fatal alignment errors

DeepVoice3 [4]

Text Input	Attention	Inference constraint	Repeat	Mispronounce	Skip
Characters-only	Dot-Product	Yes	3	35	19
Phonemes & Characters	Dot-Product	No	12	10	15
Phonemes & Characters	Dot-Product	Yes	1	4	3
Phonemes & Characters	Monotonic	No	5	9	11

Transformer TTS [7]

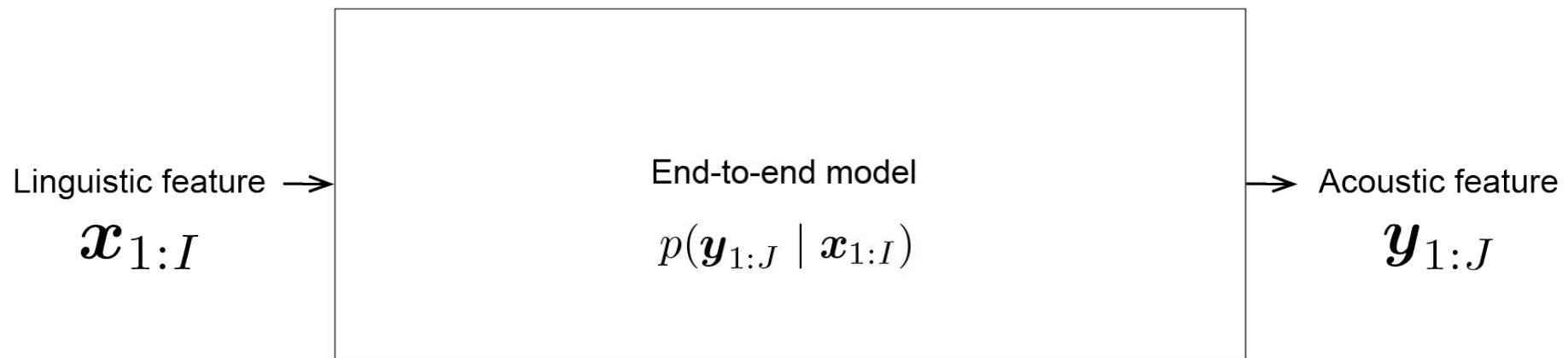
Method	Repeats	Skips	Error Sentences	Error Rate
<i>Transformer TTS</i>	7	15	17	34%
<i>FastSpeech</i>	0	0	0	0%

Design of the proposed method: SSNT based TTS

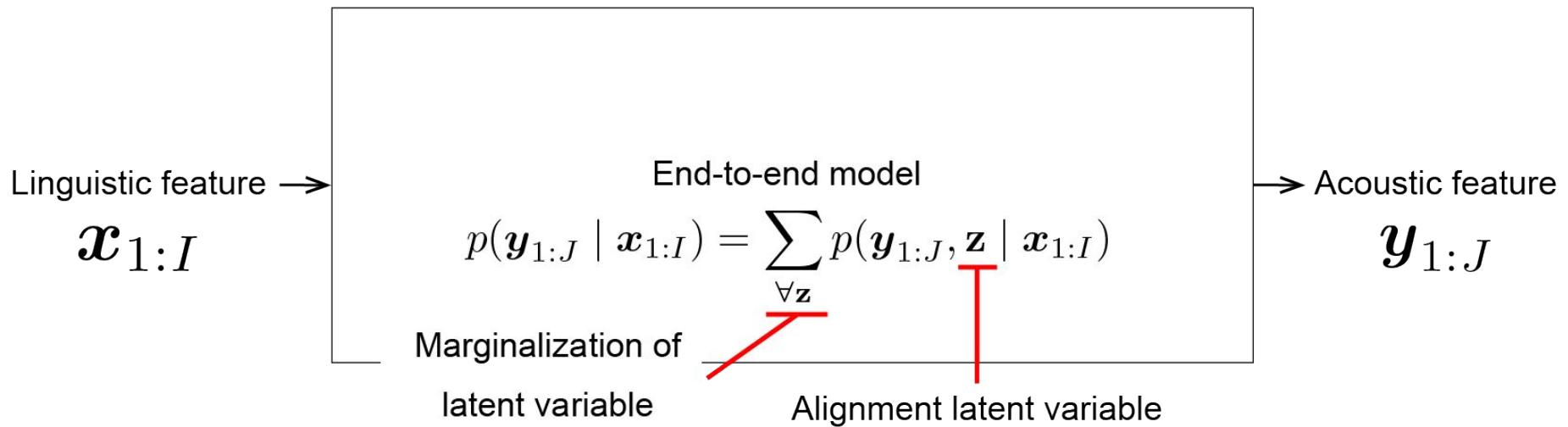
- Alignment structure is designed to be **monotonic**
- Alignment method is **hard attention**, instead of soft
- Alignment is a **latent variable**, part of probabilistic model

- Based on **SSNT** (Segment-to-Segment Neural Transduction) [8]
- Output distribution is continuous, instead of discrete

End-to-end TTS as a probabilistic model



Alignment as a latent variable



Factorization for joint probability of alignment and output

$$p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}) = \sum_{\forall \mathbf{z}} \underline{p(\mathbf{y}_{1:J}, \mathbf{z} \mid \mathbf{x}_{1:I})}$$

Factorization for joint probability
of alignment and output

$$p(\mathbf{y}_{1:J}, \mathbf{z} \mid \mathbf{x}_{1:I}) \approx \prod_{j=1}^J \underline{p(z_j \mid z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I})} \underline{p(\mathbf{y}_j \mid \mathbf{y}_{1:j-1}, z_j, \mathbf{x}_{1:I})}$$

Alignment probability Output probability

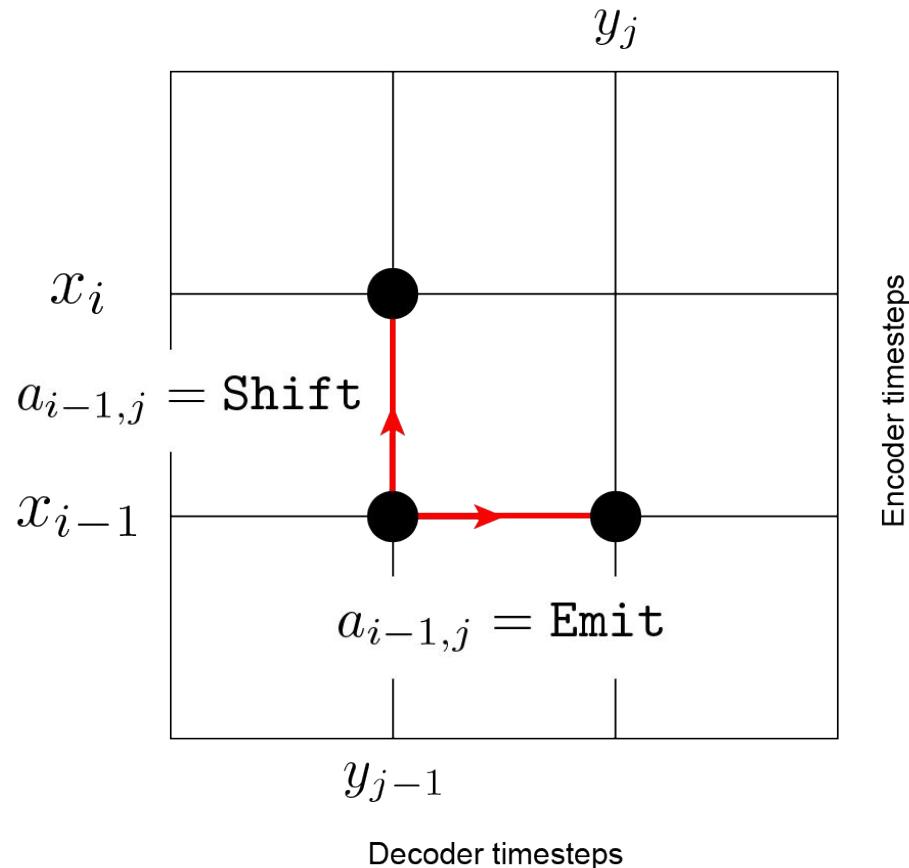
Definition of alignment transition variables

$$\prod_{j=1}^J p(z_j | z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}) p(\mathbf{y}_j | \mathbf{y}_{1:j-1}, z_j, \mathbf{x}_{1:I})$$

Alignment probability Output probability

Binary alignment
transition variable

$a_{i,j} \in \{\text{Emit, Shift}\}$



Definition of alignment probability

$$\prod_{j=1}^J p(z_j | z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}) p(\mathbf{y}_j | \mathbf{y}_{1:j-1}, z_j, \mathbf{x}_{1:I})$$

Alignment probability

Output probability

y_j

Probability when an alignment reaches input position i at timestep j

$$p(z_j = i | z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}) =$$

$$\begin{cases} 0 & z_{j-1} > i \\ p(a_{i,j} = \text{Emit}) & z_{j-1} = i \\ p(a_{i-1,j} = \text{Shift})p(a_{i,j} = \text{Emit}) & z_{j-1} = i - 1 \\ 0 & z_{j-1} < i - 1 \end{cases}$$

x_i

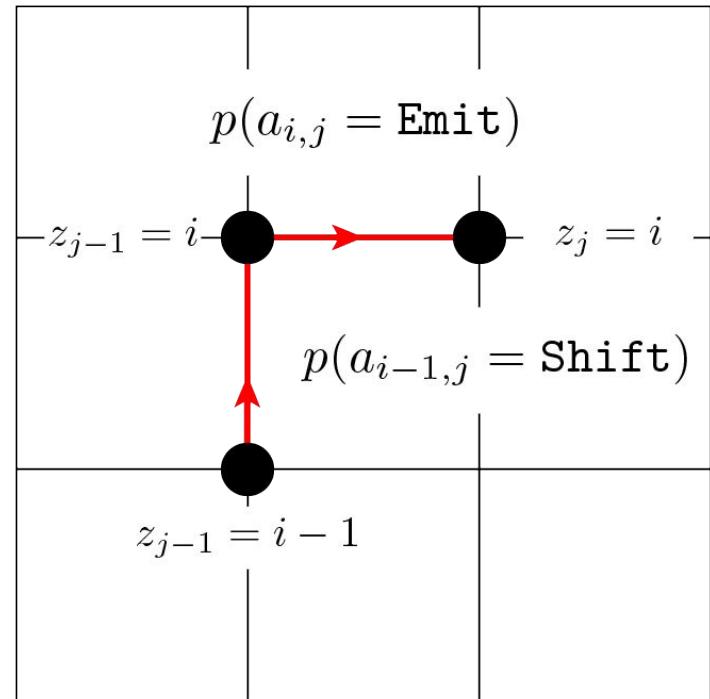
x_{i-1}

$z_{j-1} > i$

$z_{j-1} = i$

$z_{j-1} = i - 1$

$z_{j-1} < i - 1$



Decoder timesteps

Encoder timesteps

Definition of output probability

$$\prod_{j=1}^J p(z_j \mid z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}) p(\mathbf{y}_j \mid \mathbf{y}_{1:j-1}, z_j, \mathbf{x}_{1:I})$$

Alignment probability Output probability

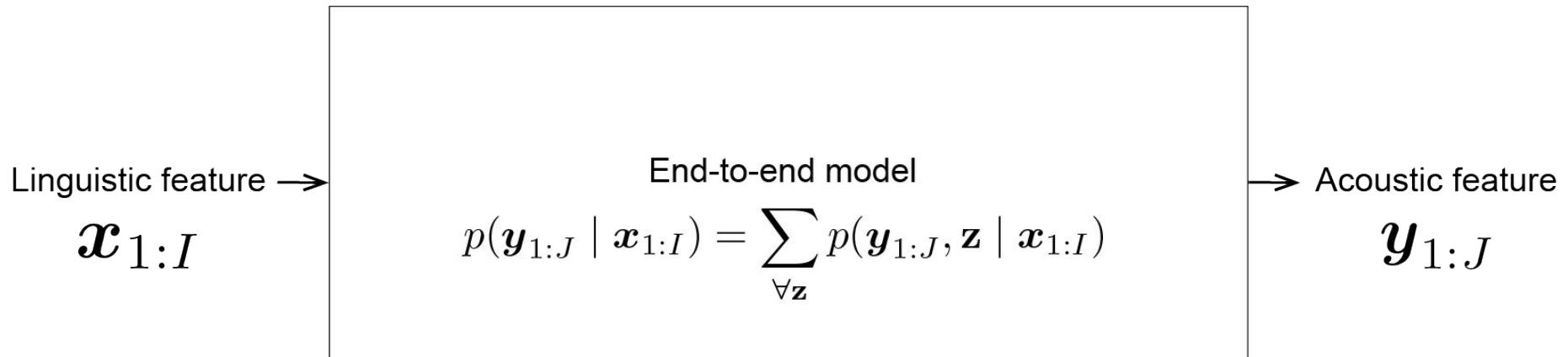
We used isotropic Gaussian distribution.

$$p(\mathbf{y}_j \mid \mathbf{y}_{1:j-1}, z_j, \mathbf{x}_{1:I}) = \mathcal{N}(\mathbf{y}_j; \boldsymbol{\mu}, \sigma^2 \mathbf{I})$$

Training (1): Objective function

Maximize $p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I})$

$$\mathcal{L}(\boldsymbol{\theta}) = -\log p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})$$

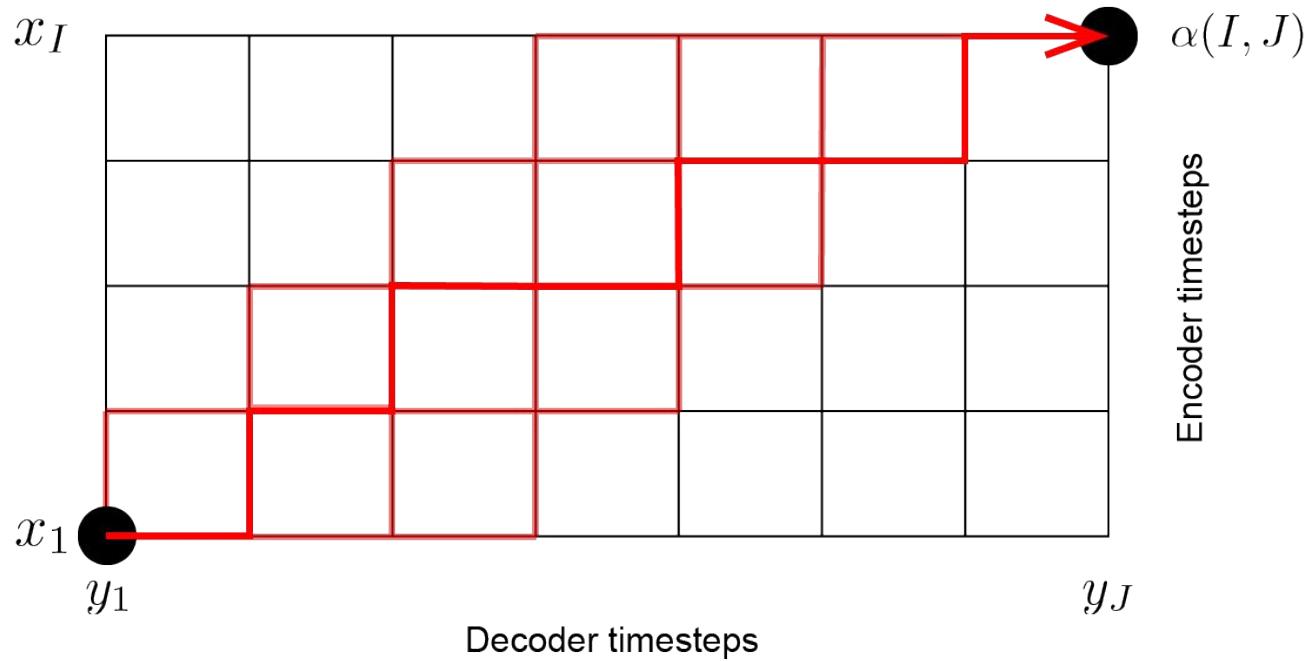


Training (2): Marginalization of alignments by forward probability

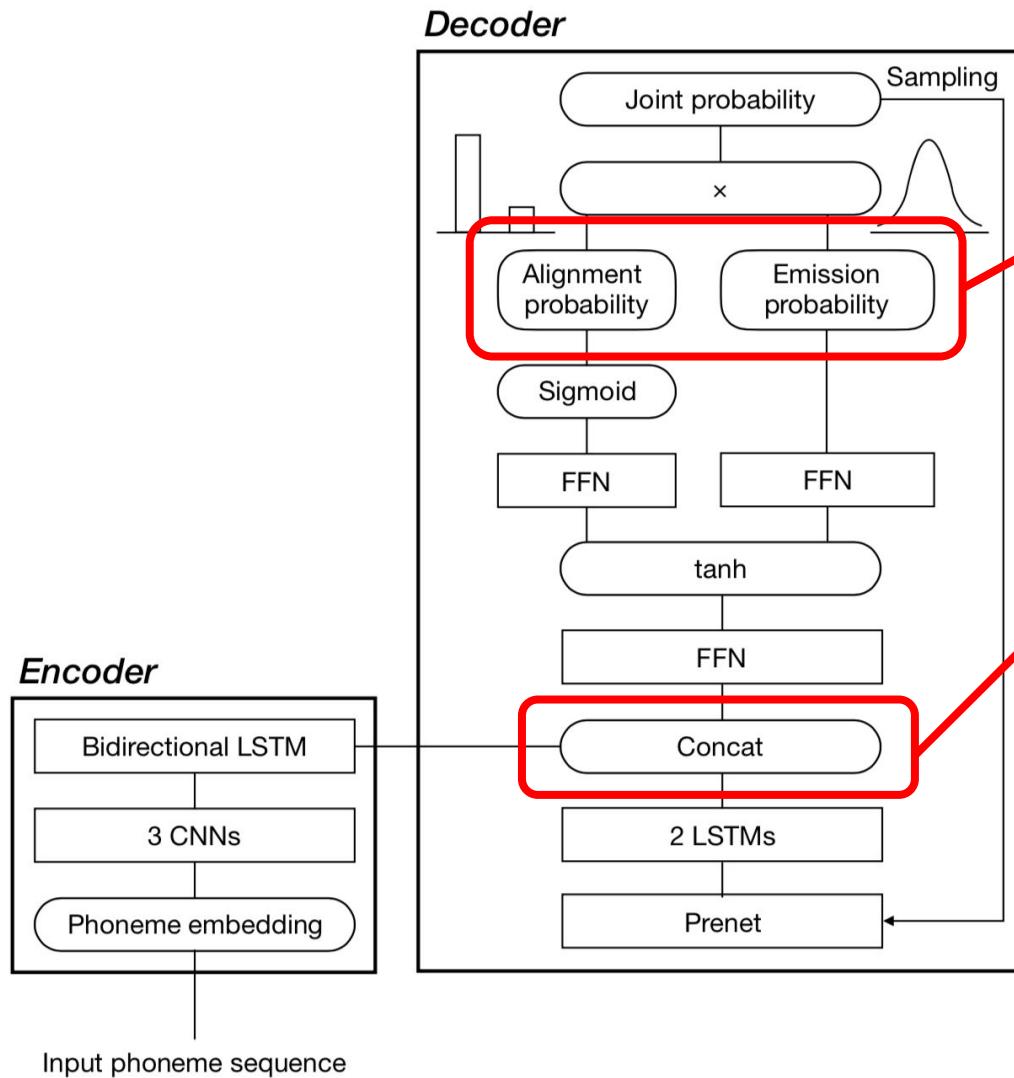
$$\mathcal{L}(\theta) = -\log p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \theta)$$

$$= - \sum_{\mathbf{z}} p(\mathbf{y}_{1:J}, \mathbf{z} \mid \mathbf{x}_{1:I})$$

$$= -\log \alpha(I, J)$$



Network structure



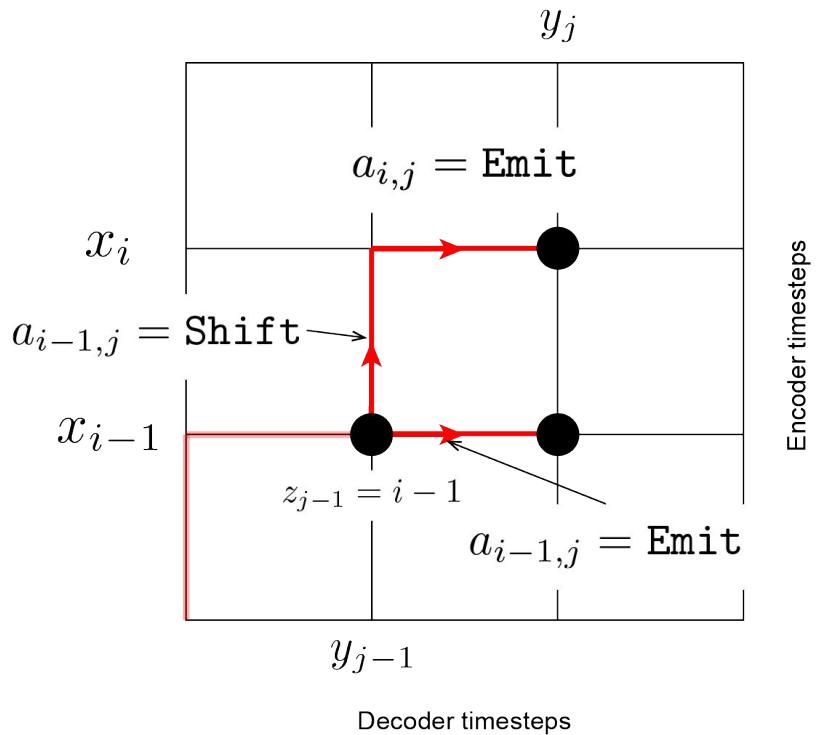
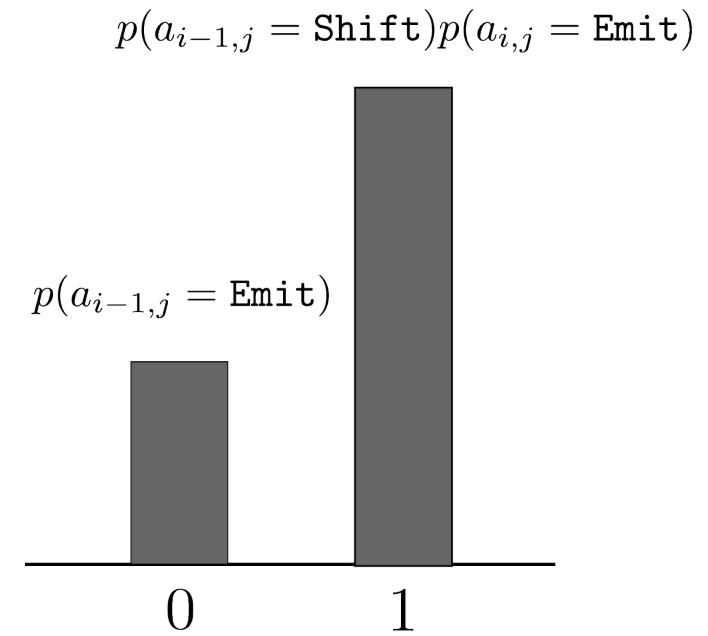
- Encoder-Decoder
- Decoder calculates alignment probability and output probability
- Decoder output is concatenated with encoder output to form trellis

Inference (1): Alignment prediction

- Greedy decode $k = \operatorname{argmax} (p(z_j = i \mid z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}))$

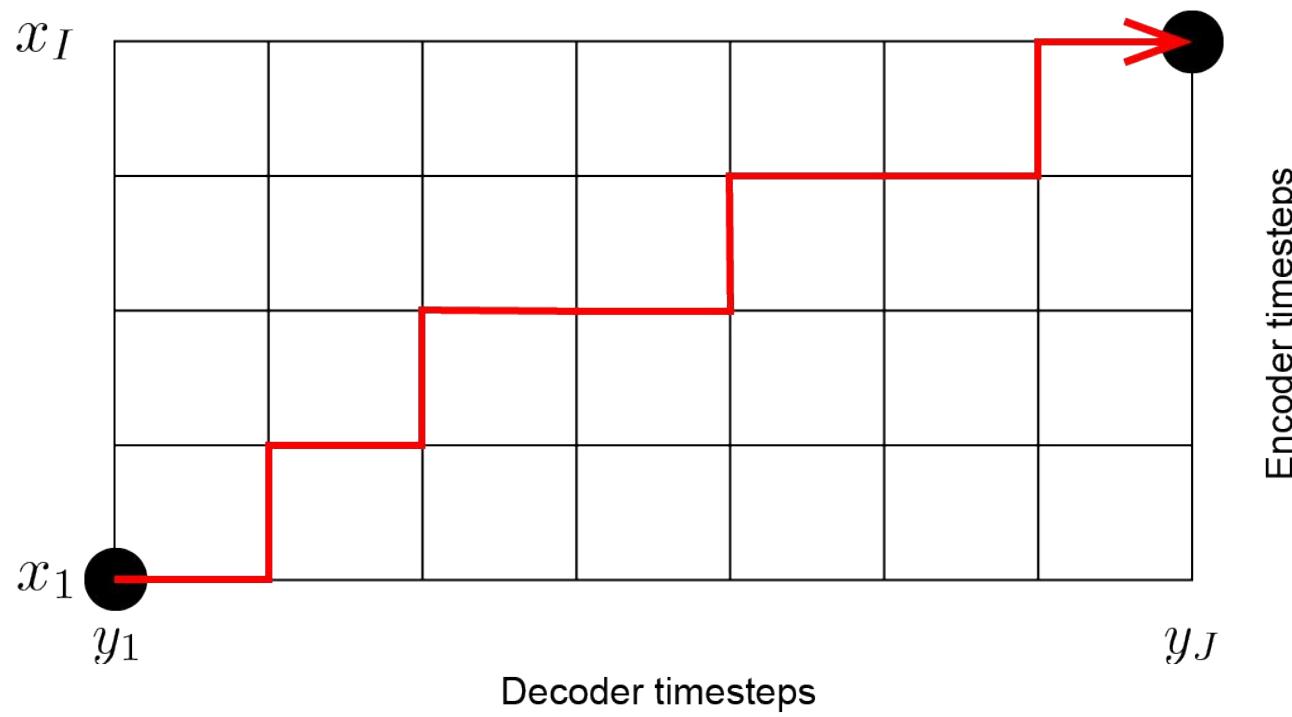
$$z_j = z_{j-1} + k \quad \text{or}$$

- Random sampling $k \sim \text{Bernoulli} (p(z_j = i \mid z_{j-1}, \mathbf{y}_{1:j-1}, \mathbf{x}_{1:I}))$



Inference (2): Stop criteria

- When alignment reaches the final position of input
- No stop flag prediction



Experiments: listening test about naturalness

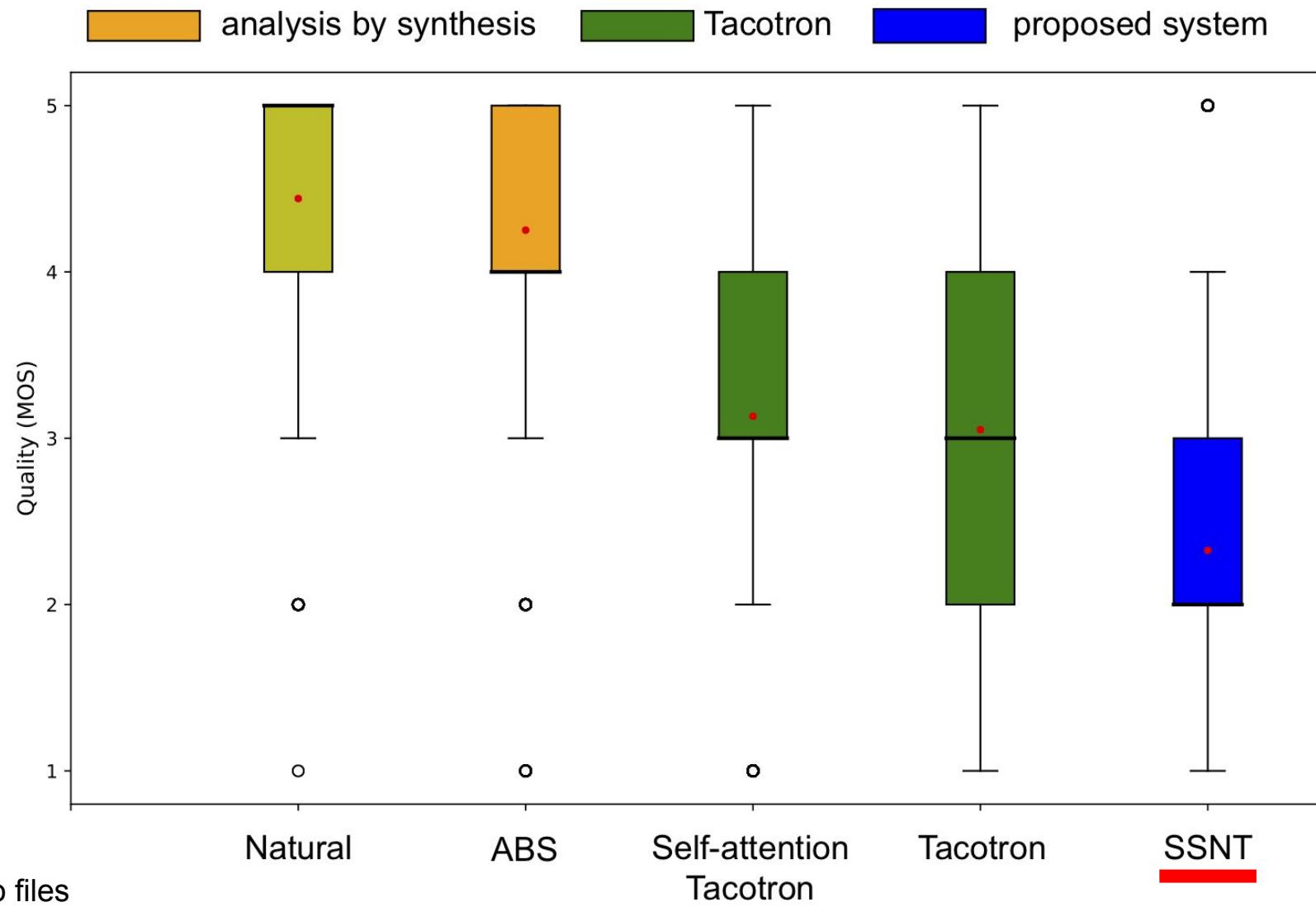
Data

- ATR Ximera (Japanese, Single speaker, 46.9h, 28,959 utterance)
- Linguistic feature: Phoneme (No accentual type label)
- Acoustic feature: Mel spectrogram (12.5 ms frame shift)
- Train/Validation/Test: 27,999/480/480
- Waveform synthesis: WaveNet

Evaluation

- Listening test about naturalness
- Listeners: 104
- Evaluation values: 19,200
- 5 systems
 - Natural, ABS, SA Tacotron, Tacotron, SSNT (Proposed)

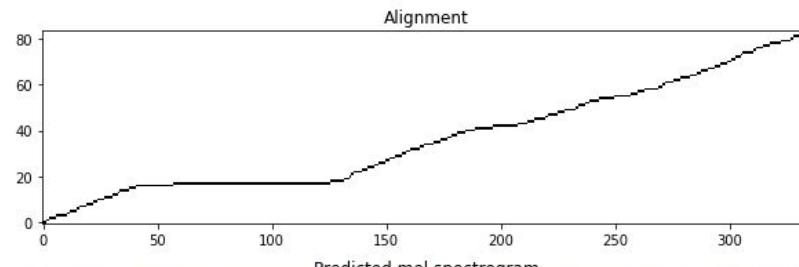
Experimental results: underperform baselines



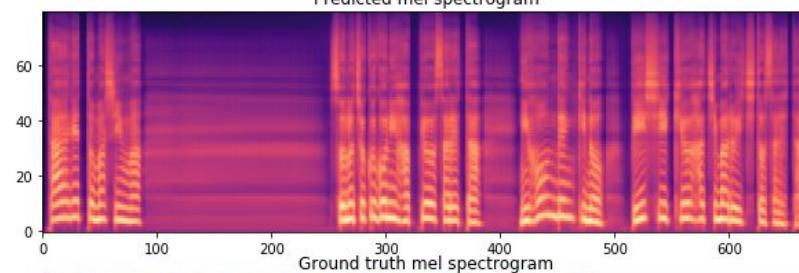
Analysis of generated samples

- Different kinds of alignment errors
 - Underestimation of duration
 - Overestimation of duration

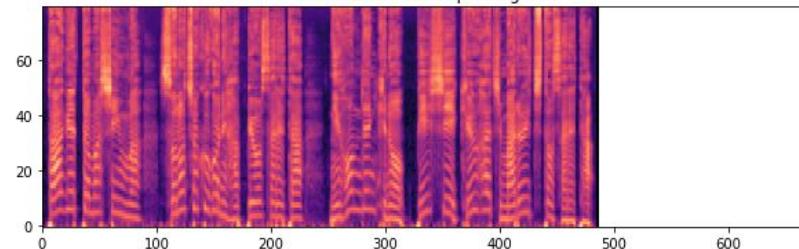
Predicted alignment



Predicted spectrogram



Ground truth spectrogram



Conclusion

- A new end-to-end TTS method
 - Monotonic alignment structure by design
 - Hard attention instead of soft attention
 - Alignment is a latent variable
 - Objective function is likelihood of marginal probability
 - Alignment can be sampled from learned distribution
- Low naturalness of synthetic speech
 - No fatal alignment errors
 - Underestimation and overestimation of duration
- Future perspective
 - Testing various alignment distribution and sampling methods
 - Covariance estimation of output probability

Audio samples

Efficient gradient calculation of objective function

$$\begin{aligned} & \frac{\partial \log p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \\ &= \frac{1}{p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})} \sum_{i=1}^I \sum_{j=1}^J \frac{\partial p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})}{\partial \alpha(i, j)} \frac{\partial \alpha(i, j)}{\partial \boldsymbol{\theta}} \\ &= \frac{1}{p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})} \sum_{i=1}^I \sum_{j=1}^J \beta(i, j) \frac{\partial \alpha(i, j)}{\partial \boldsymbol{\theta}} \end{aligned}$$

The relationship $\frac{\partial p(\mathbf{y}_{1:J} \mid \mathbf{x}_{1:I}; \boldsymbol{\theta})}{\partial \alpha(i, j)} = \beta(i, j)$ is used.