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End-to-end text-to-speech synthesis
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Proposed end-to-end TTS methods

All methods use soft attention
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Problems of soft attention:
Fatal alignment errors

Mode split Skip

Repeat Late termination
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Problems of soft attention:
Fatal alignment errors
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Design of the proposed method: 
SSNT based TTS

● Alignment structure is designed to be monotonic
● Alignment method is hard attention, instead of soft 
● Alignment is a latent variable, part of probabilistic model
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● Based on SSNT (Segment-to-Segment Neural 
Transduction) [8]

● Output distribution is continuous, instead of discrete

[8] L.Yu et al., EMNLP, 2016..



End-to-end TTS as a probabilistic model
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Alignment as a latent variable
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Factorization for joint probability of alignment and 
output
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Definition of alignment transition variables
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Binary alignment
 transition variable

Output probabilityAlignment probability



Definition of alignment probability
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Probability when an 
alignment reaches input 
position i at timestep j

Output probabilityAlignment probability



Definition of output probability
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We used isotropic Gaussian distribution.

Output probabilityAlignment probability



Training (1): Objective function
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Maximize



Training (2): Marginalization of alignments by 
forward probability
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Network structure
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● Encoder-Decoder
● Decoder calculates 

alignment probability 
and output 
probability

● Decoder output is 
concatenated with 
encoder output to 
form trellis



Inference (1): Alignment prediction
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Inference (2): Stop criteria

● When alignment reaches the final position of input
● No stop flag prediction
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Experiments: listening test about naturalness
Data

● ATR Ximera (Japanese，Single speaker，46.9h，28,959 
utterance) 

● Linguistic feature: Phoneme (No accentual type label)
● Acoustic feature: Mel spectrogram (12.5 ms frame shift)
● Train/Validation/Test: 27,999/480/480
● Waveform synthesis: WaveNet

Evaluation

● Listening test about naturalness
● Listeners: 104
● Evaluation values: 19,200
● 5 systems

○ Natural, ABS, SA Tacotron, Tacotron, SSNT (Proposed)
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Experimental results: underperform baselines
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Analysis of generated samples

● Different kinds of alignment errors
○ Underestimation of duration
○ Overestimation of duration
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Predicted alignment

Predicted spectrogram

Ground truth spectrogram



Conclusion

● A new end-to-end TTS method
○ Monotonic alignment structure by design
○ Hard attention instead of soft attention
○ Alignment is a latent variable
○ Objective function is likelihood of marginal probability 
○ Alignment can be sampled from learned distribution

● Low naturalness of synthetic speech
○ No fatal alignment errors
○ Underestimation and overestimation of duration

● Future perspective
○ Testing various alignment distribution and sampling 

methods
○ Covariance estimation of output probability
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Audio samples
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Efficient gradient calculation of objective function
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is used.The relationship


