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Introduction to SSNT-TTS



Sequence-to-sequence text-to-speech synthesis
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Tacotron vs SSNT-TTS: Tacotron

Tacotron
Linguistic R _ o Acoustic
: Attention :
feature 5|  Encoder |—>! —>1 Decoder |—> feature
€T 1-7 | : mechanlsm : : yl' J
p(y1.slx1.1) = Hp Y51y, 1,210 (2ilyj—1, s)x )

Autoregressive densuty modeling |
Alignment as expectation of linguistic features



Tacotron vs SSNT-TTS: SSNT-TTS
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Tacotron vs SSNT-TTS:

Tacotron (Soft attention)
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Tacotron vs SSNT-TTS: problems of soft attention
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SSNT-TTS: monotonic alignment structure

SSNT-TTS (Hard attention) Zj = Zj-1 T k
vj

p(ai_l,j = Shift)
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Yasuda et al., Initial investigation of encoder-decoder end-to-end TTS framework using marginalization of monotonic hard

alignments. SSW10, 2019.
Yu et al., Online Segment to Segment Neural Transduction. EMNLP 2016.




Topic: Investigation of alignment prediction methods

How can we find the most optimal alignment
during inference?
1. Randomness < Nondeterministic nature of speech
2. Search methods < Autoregressive decoding
3. Probability distributions < Suitable distribution for random sampling
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1. Randomness

— How to predict transition probabilities —
Deterministic prediction vs sampling from Bernoulli
distribution



Randomness: Sampling from Bernoulli distribution

Gumbel-Max trick (Yellott, 1977):

An implementation of sampling from Bernoulli distribution.

]P(ai,j - Emit) - P(Gl + logal = G2 + log a2) Add Gumbel noise to logits.

= P(L + log a1 > log a2), Difference of two Gumbel
noises is Logistic noise.

Qi j = argnla}((L - log o1 log %) ) . Obtain discrete sample by
argmax operator.

Yellott, The relationship between luce’s choice axiom, thurstone’s theory of comparative judgment, and the double exponential

distribution. Journal of Mathematical Psychology, 1977



Randomness: Relationship with greedy decode
Greedy decode
a; ; = argmax(log ai,logas)

Sampling from Bernoulli distribution
a; ; = argmax(L + log a1, log as)

The difference between Greedy decode and sampling from
Bernoulli distribution is the presence of Logistic noise.



2. Search methods

— How to search the best path over trellis —
Greedy vs Beam search



Search: Greedy search

a;,; = argmax(log a1, log ag) = {

1
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n
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if 1 > o

if op < o

Greedy search takes a path with the
highest probability at each time step.



Search: Beam search

(a;?eaml, e a?eamK) TopK (log p(a beaml) + log abeaml Keep top K alignment
candidates at each time step.
logp( beaml) i log abeaml
M)
logp( beamK) 4 log Cubea,mK
1ng( beamK) i log abeamK)
. Take the highest as a final
_ beaml beamK
(a1, .., ay) = PathHistory (argmax (p(a;j**™), ..., p(a;*""))) alignment at the last time step.
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Greedy decode is a special case
where K = 1.
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1. Randomness & 2. Search: Stochastic search

Stochastic greedy search
(sampling from Bernoulli
distribution)

a; ; = argmax(L + log a1, log as)

(a?eam17 . 7a;?eamK) — TOpK(log p(a;?ialml) + L + log ag’eaml, Stochastic beam search

log p(abe3™) + log ag*™?,




3. Probability distributions

— What is the best probabilistic distribution for transition
probabilities? —
Logistic vs binary Concrete distributions



Probability distributions: Logistic distribution

a

2 a1

. @

loga = loga. /a,

A sample from Bernoulli distribution can
be drawn from Logistic distribution
followed by argmax operator
(Gumbel-max trick).

We refer sampling from Bernoulli
distribution as Logistic condition.



Probability distributions: binary Concrete distribution

IP’(a,,;,j = Emit) =
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Concrete distribution:
Continuous relaxation of
discrete distribution (Maddison
et al., 2017).

Parametrized with a and A.

Sample can be drawn with
sigmoid added Logistic noise.

Lower temperature A encourages

discretization.

Maddison et al., The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables. ICLR 2017



Randomness, Search, Probability distribution: all together

Logistic condition Binary Concrete condition
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Experiments & Results



Experiments

Corpus: ATR Ximera
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Discussion & Summary

e The Logistic and binary Concrete conditions can estimate the alignment

transition boundaries.
o Both conditions had similar scores under deterministic search.

e The Logistic condition does not parametrize proper alignment transition

distribution.
o The Logistic condition performed very badly under stochastic search.
e The binary Concrete conditions can fill the gap between continuous and

discrete distributions.
o The binary Concrete conditions were relatively robust to stochastic search condition.



Conclusion

e Alignment prediction methods were investigated for SSNT-TTS

e The conditions for alignment prediction included:
o Randomness
o Search methods
o Probability distributions
e Our experiment showed
o Deterministic condition was favorable than stochastic condition
o Beam search was helpful to improve naturalness
o The binary Concrete distribution was relatively robust under stochastic search

Audio samples: https://nii-yamagishilab.github.io/sample-ssnt-sampling-methods



SSNT-TTS (Yasuda et al., 2019 [1])

Alignment structure is designed to be monotonic
Alignment method is hard attention, instead of soft
Alignment is a discrete latent variable

Based on SSNT (Segment-to-Segment Neural
Transduction) [2]
Output distribution is continuous, instead of discrete

[1] Yasuda et al. SSW10, 2019.
[2] Yu et al., EMNLP, 2016.



SSNT-TTS: end-to-end TTS as a probabilistic model

Linguistic feature —> End-to-end model —> Acoustic feature
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SSNT-TTS: factorization for joint probability of
alignment and output

P(Yr.g | @11) = ZP?J1J7Z|€B1I

Factorization for joint probability

of alignment and output

J
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j=1

Alignment probability Output probability



SSNT-TTS: definition of alignment transition variables

J
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SSNT-TTS: Training with marginalization of
alignments by forward probability

Maximize p(’.‘h;J | 331:1)

ﬁ(a) = _1ng(y1:J | ml:];a)

—> Acoustic feature

Yi.g

Ly

X1

L(0) =—logp(y,.; | ©1.1;0)
— _Zp(ylzjoz | wli[)
Vz

= —loga(l,J)

Y1

Yi

a(l,J)



SSNT-TTS: alignment prediction during inference

-Greedy decode k& = argmax (p(zj =i|2j-1,Y1.5-1, :131;[))
Zj — Zj—1 + k or

“Random sampling k ~ Bernoulli (p(z; =i | zj_1,Y1.;_1, T1.1))
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