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and the Learnable Dictionary Encoding (LDE) method.
e |ncorporating neural speaker embeddings into Tacotron-based TTS

systems; experiments on zero-shot speaker similarity.
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neural speaker embeddings



End-to-end TTS: Tacotron + Vocoder

* Tacotron: Learns mappings from char/phonemes to mel spectrogram
*\Vocoder (Wavenet): Converts mel spectrogram to waveforms
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End-to-end Multi-Speaker TTS

* Goal: synthesize 100+ speakers’ “voice” with a single model
* Without having to re-train the whole system
* Small amount of target speaker data
* Generalize to unseen speakers during training



Two Approaches to Multi-Speaker TTS

* Model Fine-tuning
* + Works well using a small amount of data (minutes)
- Adaptation data must be transcribed and TTS-quality
* - Requires additional training steps for every new speaker



Two Approaches to Multi-Speaker TTS

* Model Fine-tuning
* + Works well using a small amount of data (minutes)
- Adaptation data must be transcribed and TTS-quality
* - Requires additional training steps for every new speaker

* Transfer Learning from ASV
* + Requires even less target speaker data (seconds)
* + Transcripts are not required; adaptation data can be low-quality
e + ASV systems can be trained on 1000+ of speakers
* + No additional training steps required for new speakers
* - Speaker similarity for unseen speakers is not as good



Transfer Learning from ASV to TTS

* Pretrain a speaker recognition model to get speaker embeddings

* Input the speaker embedding to TTS*
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*During inference, target speakers need not be seen during training



Tacotron2 with Dual-Source Attention™
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*Yasuda et al. 2019: Investigation of enhanced Tacotron text-to-speech synthesis systems with self-attention for pitch accent
language
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Experiments: Embeddings Input Location and
Training Strategy

* Input location: Prenet (pre), Decoder Attention (attn), Both
(pre+attn), Both+Postnet (pre+attn+post)
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Experiments: Embeddings Input Location and
Training Strategy

* Input location: Prenet (pre), Decoder Attention (attn), Both
(pre+attn), Both+Postnet (pre+attn+post)

* Training strategy:
* Train from scratch or pre-train?
* Gender-independent or gender-dependent?

* Objective evaluation: Speaker similarity between original voices and
synthesized voices — cosine similarity

* Unseen speakers are most important

* Data: VCTK corpus (English; 109 speakers)
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Results 1: From Scratch vs. Warm Start

* Training from scratch:
* Train on VCTK data only
* ¥4 days to get reasonable quality and speaker similarity



Results 1: From Scratch vs. Warm Start

* Training from scratch:
* Train on VCTK data only
* ¥4 days to get reasonable quality and speaker similarity

* Warm-start training:

* |nitialize model parameters from a well-trained single-speaker model (Blizzard
2011 “Nancy,”; 3x larger vocabulary)

* ~1 day of additional training with VCTK data to get about equivalent quality
and speaker similarity



Results 2: Unseen Speaker Similarity [-1, +1]

Input location Gender-ind Gender-dep
train dev train dev
pre 0.357 | 0.402 0.438 | 0.361
attn 0.709 | 0.490 0.711 | 0.476
pre+attn 0.676 | 0.489 0.708 0.533
pre+attn+post 0.684 | 0.480 0.717 | 0.477
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Neural Speaker Embeddings: Overview
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Neural Speaker Embeddings: Overview

End-to-end speaker recognition model
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Neural Speaker Embeddings: Overview

TDNN Statistical cross entropy loss

Learnable dictionary

Rosliots encoding

angular softmax loss

Villalba et al. 2019: State-of-the-art Speaker Recognition for Telephone and Video Speech: the JHU-MIT Submission for NIST SRE18 -1



Neural Speaker Embeddings: x-vectors

TDNN Statistical cross entropy loss

Learnable dictionary

ResNets encoding

angular softmax loss
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x-vectors

Villalba et al. 2019: State-of-the-art Speaker Recognition for Telephone and Video Speech: the JHU-MIT Submission for NIST SRE18 >



Neural Speaker Embeddings: LDEs

Villalba et al. 2019: State-of-the-art Speaker Recognition for Telephone and Video Speech: the JHU-MIT Submission for NIST SRE18 -5



Learnable Dictionary Encoding Method

[

Cai et al. 2019: Exploring the encoding layer and loss function in end-to-end speaker and language recognition system
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Learnable Dictionary Encoding Method
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Cai et al. 2019: Exploring the encoding layer and loss function in end-to-end speaker and language recognition system



Learnable Dictionary Encoding Method
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Cai et al. 2019: Exploring the encoding layer and loss function in end-to-end speaker and language recognition system




Experiments: Speaker Verification EER

* Data: VoxCeleb I+l (7000+ speakers)
e Baselines: i-vectors, x-vectors



Experiments: Speaker Verification EER

* Data: VoxCeleb I+l (7000+ speakers)
e Baselines: i-vectors, x-vectors
* | DEs:

* Dimension: {512, 256, 200}

* Loss: {softmax, angular softmax (m=2, 3, 4)}
* Pooling: {mean, mean+std.dev}

* Post-processing: {N/A, centering and LDA dim-reduction to 200dim}
* 17 total systems
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Results 3: Speaker Verification EER

embed. dim. pl. obj. norm | EER | DCF{'57
i-VecN 400 | m EM v~ ] 5329 0.493
x-Vec 512 | m,s S 3.298 0.343
x-Vec™ 512 | m,s S v' | 3.213 0.342
LDE-1 512 [ m S 3.415 0.366
LDE-1" || 512 | m S v’ | 3.446 0.365
LDE-2 512 | m | AS(Q2) 3.674 0.364
LDE-2" || 512 | m | AS(2 v | 3.664 0.386
m

AS(3)

m . ”
LDE-4 512 m | AS®) 3.112 0.315
LDE-4YN || 512 m | AS@) | VvV 3.271 0.327
LDE-5 256 m | ASQ2) 3.287 0.343
LDE-5Y || 256 m | ASQ2) | v | 3.367 0.351
LDE-6 200 m | ASQ2) 3.266 0.396
LDE-6Y || 200 m | ASQ2) | v | 3.266 0.396
LDE-7 512 | m,s | AS(2) 3.091 0.303
LDE-7" || 512 | m,s | ASQ2) | v~ | 3.171 0.328




Results 3: Speaker Verification EER

embed. dim. pl. obj. norm | EER | DCF{'57
i-Vec™ 400 | m EM v~ | 5329 0.493
x-Vec 512 | m,s S 3.298 0.343
x-Vec™ 512 | m,s S v' | 3.213 0.342
LDE-1 512 [ m S

LDE-1" || 512 | m S v’

LDE-2 512 | m | AS(Q2)

LDE-2Y || 512 | m | ASQQ) | Vv~

LDE-3 512 | m | ASQ3)
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LDE-4 512 | m | AS®)

LDE4YN || 512 | m | AS@) | Vv~
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LDE-6" || 200 | m | ASQ2) | Vv~

LDE-7 512 | m,s | AS(2)
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Yi et al. 2019: Large Margin Softmax Loss for Speaker Verification.



Experiments: Naturalness and Speaker
Similarity

* Ground truth + Wavenets
e Tacotron2 + x-vectors + Wavenets
e Tacotron2 + LDEs + Wavenets

* Naturalness MIOS (1-5); Speaker Similarity DMOS (1-4)



Results 4: Naturalness and Speaker Similarity

Naturalness Similarity
system train | dev test train | dev test

vocoded 3.51 3.41 3.55 3.02 | 2.79 2.82

x-Vec™ 3.20 | 3.19 | 3.19 293 | 1.86 | 2.37

LDE-1 3.15 ] 3.16 | 321 || 2.87 | 2.05 | 2.34
_ LDE-1Y || 3.04 | 3.13 | 3.46 || 287 | 1.97 | 245
train, dev and ILDE2 || 3.11 | 3.28 | 335 || 2.84 | 2.00 | 237
test has separate LDE-2" || 3.13 | 3.19 | 333 || 290 | 2.00 | 2.35
speaker sets LDE-3 3.09 | 324 | 348 || 2.89 | 1.88 | 2.46

LDE-3YN || 3.14 | 3.16 | 333 || 291 | 2.00 | 2.37
LDE-4 3.08 | 3.10 | 3.29 || 2.94 | 2.00 | 2.31
LDE4YN || 3.12 | 320 | 329 || 290 | 1.98 | 2.39
LDE-5 3.07 | 326 | 340 || 289 | 1.99 | 2.45
LDE-5YN || 3.11 | 3.07 | 337 || 2.88 | 2.02 | 241
LDE-6 312 | 325 | 333 || 292 | 195 | 243
LDE-6" || 3.13 | 329 | 3.23 || 2.88 | 1.94 | 2.39
LDE-7 3.15 | 3.03 | 3.18 || 291 | 1.86 | 2.28
LDE-7" || 3.07 | 3.02 | 3.24 || 2.83 | 2.02 | 2.42
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Naturalness Similarity
system train | dev test train | dev test
vocoded 3.51 | 3.41 | 3.55 3.02 | 2.79 | 2.82
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LDE-3YN || 3.14 | 3.16 | 333 || 291 | 2.00 | 2.37
LDE-4 3.08 | 3.10 | 329 || 294 | 2.00 | 2.31
LDE4YN || 3.12 | 320 | 329 || 290 | 1.98 | 2.39
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LDE-6 3.12 | 325 | 333 || 292 | 1.95 | 2.43
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Results 4: Naturalness and Speaker Similarity

Naturalness Similarity
system train dev test train dev test
vocoded 3.51 3.41 3.55 3.02 | 2.79 2.82
x-Vec™ 3.20 | 3.19 | 3.19 || 293 | 1.86 | 2.37
LDE-1 3.15 ] 3.16 | 321 || 2.87 | 2.05 | 2.34
LDE-1YN || 3.04 | 3.13 | 346 || 2.87 | 1.97 | 2.45
LDE-2 3.11 | 328 | 335 || 2.84 | 2.00 | 2.37
[ DE-2 1 19 200 | 200 | 2
LDE-3" || 3.14 | 3.16 | 3.33 || 291 | 2.00 | 2.37
LDE-4 3.08 | 3.10 | 329 || 294 | 2.00 | 2.31
LDE4YN || 3.12 | 320 | 329 || 290 | 1.98 | 2.39
LDE-5 3.07 | 326 | 340 || 289 | 1.99 | 245
LDE-5" || 3.11 | 3.07 | 3.37 || 2.88 | 2.02 | 241
LDE-6 3.12 | 325 | 333 || 292 | 1.95 | 2.43
LDE-6" || 3.13 | 329 | 3.23 || 2.88 | 1.94 | 2.39
LDE-7 3.15 | 3.03 | 3.18 || 291 | 1.86 | 2.28
LDE-7" || 3.07 | 3.02 | 324 || 2.83 | 2.02 | 2.42
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Results 4: Naturalness and Speaker Similarity

Naturalness Similarity
system 1 dev test
vocoded 2.79 2.82
x-Vec™ 1.86 | 2.37
LDE-1 2.05 | 2.34

| LDE-1N 1.97 | 245
No drop! LDE-2 2.00 | 2.37
LDE-2" 2.00 | 2.35

LDE-3 1.88 | 2.46
LDE-3N 2.00 | 2.37

LDE-4 2.00 | 2.31
LDE-4N 1.98 | 2.39

LDE-5 1.99 | 2.45
LDE-5" 2.02 | 241

LDE-6 1.95 | 243
LDE-6™ 1.94 | 2.39

LDE-7 1.86 | 2.28
LDE-7 2.02 | 242




Naturalness Similarity
system train dev test train test
vocoded 3.51 3.41 3.55
x-Vec™ 3.20 | 3.19 | 3.19
LDE-1 3.15 | 3.16 | 3.21
LDE-1Y || 3.04 | 3.13 | 3.46
LDE-2 3.11 | 3.28 | 3.35
LDE-2" || 3.13 | 3.19 | 3.33
LDE-3 3.09 | 3.24 | 3.48
LDE-3YN || 3.14 | 3.16 | 3.33
LDE-4 3.08 | 3.10 | 3.29
LDE-4YN || 3.12 | 3.20 | 3.29
LDE-5 3.07 | 3.26 | 3.40
LDE-5" || 3.11 | 3.07 | 3.37
LDE-6 3.12 | 325 | 3.33
LDE-6" || 3.13 | 3.29 | 3.23
LDE-7 3.15 | 3.03 | 3.18
LDE-7" || 3.07 | 3.02 | 3.24

Results 4: Naturalness and Speaker Similarity

Drop!
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Results 4: Samples!

https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/



Conclusions

* Warm-start training works well

* Gender-dependent model training gives better speaker similarity

* Inputting speaker embedding at prenet+attention gives best speaker
similarity

*Improved LDE embeddings can improve speaker similarity
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Ongoing and Future Work

* Speaker space augmentation
* SoX speedup and slowdown
» Additional sources of multi-speaker data
* Dialect modeling

* Multilingual / cross-lingual

* Are LDE embeddings trained on English VoxCeleb data model
language-independent?



Thanks for listening! Questions?
ecooper@nii.ac.jp (Erica)
clai24@mit.edu (Jeff)




