

Design Choices for X-vector Based Speaker Anonymization

Brij Mohan Lal Srivastava, Natalia Tomashenko, Xin Wang, Emmanuel Vincent, Junichi Yamagishi, Mohamed Maouche, Aurélien Bellet, Marc Tommasi

Methods for privacy protection in speech

Anonymization by voice conversion

Design choices in speaker anonymization

- 1. What is the appropriate metric to measure distance between speakers?
- 2. How to select "**target**" pseudo-speakers from a *small* pool of speakers for robust anonymization?
- 3. What set of pseudo-speakers will result in high **privacy** protection as well as smaller loss of **utility**?

Speaker representation: x-vectors

- Behind the state-of-the-art biometric identification techniques
- Fixed length vector for an utterance regardless of duration ("voiceprint")
- Intermediate layer of a neural network trained to classify speaker

X-vector distance metric

cosine
$$(u, v) = 1 - \frac{u \cdot v}{||u||_2 ||v||_2}$$

$$PLDA(u, v) = \log \frac{p(u, v | \mathcal{H}_{same})}{p(u, v | \mathcal{H}_{different})}$$

u and v are x-vectors. $\mathcal{H}_{\mathrm{same}}$ and $\mathcal{H}_{\mathrm{different}}$ are the same-speaker and different-speaker hypotheses respectively.

Target pseudo-speaker selection

Privacy evaluation: Attackers simulated using Automatic Speaker Verification

Utility evaluation: Automatic Speech Recognition

Distance

PLDA outperforms cosine distance in x-vector space marginally.

The proximity is fixed to **far** and target gender is **same**.

Proximity

Dense and **Sparse** proximity perform better in semi-ignorant attack resulting in robust anonymization.

Distance is fixed to **PLDA** and target gender is **same**.

Gender selection

Random target gender produces much stable anonymization across both the gender and both the attackers than using same or opposite.

Mean PLDA distance

Indeed **Far** proximity exhibits large distance as opposed to **Near**.

Random gender is between Same and Opposite gender.

X-vector space before and after anonymization

Word Error Rate

Dense proximity with **Random** gender selection produces reasonable loss of utility as compared to other combinations.

Distance	Proximity	Gender- selection	Dev WER (%)	Test WER (%)
Baseline (no anonymization)			3.83	4.15
Random			6.28	6.58
Cosine	Far		6.50	6.81
PLDA			6.38	6.71
	Near	Same	6.42	6.79
	Sparse		10.04	10.94
			6.45	6.83
	Dense	Random	6.86	6.88
		Opposite	7.22	7.19

Conclusion

- PLDA distance marginally better than cosine distance in x-vector space.
- Among the different proximity choices, **Dense region** in combination with
 Random gender selection produce reasonable privacy as well as utility.

Future directions

Stronger attacker:

- 1. Is this anonymized data **viable** for ASR training?
- 2. What is the residual speaker information after anonymization (leakage from BN features and F0)?

Thanks for your attention!

More details on:

https://brijmohan.github.io/

Email: brij.srivastava@inria.fr

