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Overview

● Background: Zero-shot adaptation of multi-speaker Tacotron

● Speaker augmentation: Two approaches

● Modifications to Tacotron

● Experiments

● Results

● Conclusions
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● Model speakers using a speaker embedding extracted from a separately-trained 

speaker encoder network
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Background: Zero-shot speaker adaptation for Tacotron

● Model speakers using a speaker embedding extracted from a separately-trained 

speaker encoder network

● VCTK: ~100 speakers; Tacotron overfits and does not generalize to unseen speakers 

well.

● Speaker augmentation: can we include more speakers during training?

Trained on VCTK
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Speaker Augmentation: Two Approaches

● Vocal tract length perturbation (VTLP): speed up and slow down VCTK training data 

to create additional artificial “speakers” for training

6



Speaker Augmentation: Two Approaches

● Vocal tract length perturbation (VTLP): speed up and slow down VCTK training data 

to create additional artificial “speakers” for training

● Speaker augmentation using low-quality data: data which was not specifically 

collected for TTS but contains a large variety of speakers
○ GRID, WSJ1, WSJCAM, TIMIT

○ How should we handle the different channel and recording conditions?

○ Many English dialects; should we model them?
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1st Approach: Artificial Speaker Augmentation (VTLP) 

● SoX: 'speed' command at rates 0.9 (slower) and 1.1 (faster)

● Re-sampling of waveforms -> different fundamental frequency, speaking rate, 

formants, and spectra 

0.9 1.0 
(original)

1.1
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2nd Approach: Speaker augmentation using low-quality 
data

Trained on VoxCeleb
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2nd Approach: Speaker augmentation using low-quality 
data

Trained on VoxCeleb

[VCTK, GRID, WSJ1, 
WSJCAM, TIMIT]
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2nd Approach: Speaker augmentation using low-quality 
data

Trained on VoxCeleb

[VCTK, GRID, WSJ1, 
WSJCAM, TIMIT]

Trained on ATR 
English Dialects
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Trained on the ATR English Dialect corpus.  

Extracting Dialect Embeddings from E2E Dialect Recognition Model
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DE Selection Criterion: cosine-similarity between the embeddings of synthetic speech and 

target speaker’s speech 

Final Dialect Embeddings (DE) Configurations

"Zero-Shot Multi-Speaker Text-to-Speech with State-of-the-Art Neural Speaker Embeddings," ICASSP 2020 13



Multi-Step Warm-Start Training

14



Multi-Step Warm-Start Training
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Multi-Step Warm-Start Training
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Multi-Step Warm-Start Training
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Experiments

● Phone or character input Tacotron models

● Artificial speaker augmentation

● Low-quality data speaker augmentation:
○ GRID: 32 speakers; limited domain; some background noise

○ WSJ1: 50 American dialect speakers; news domain

○ WSJCAM: 85 British dialect speakers; news domain; line noise and reverberation

○ TIMIT: 50 American dialect speakers; small number of phonetically-rich sentences

● Channel labels
○ Training: label which corpus the utterance is from

○ Synthesis: use “VCTK” channel label for best quality

● Dialect encoder 
○ 5 best for character input and for phoneme input

● Vocoder: WaveNet trained on VCTK
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Evaluation

● Naturalness: Mean Opinion Score (1-5)

● Speaker similarity: Differential MOS (1-5)
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Results: MOS and DMOS
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Results: MOS and DMOS
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Results: MOS and DMOS
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MOS and DMOS for VTLP

VTLP does not 

improve speaker 

similarity
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MOS and DMOS: ASR Data Speaker Augmentation

Speaker augmentation 

with ASR data improves 

naturalness for seen 

speakers
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Dialect embedding and 

channel label are 

required to see 

improvements with ASR 

data
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MOS and DMOS: ASR Data Speaker Augmentation



Architecture of 

dialect encoder 

matters
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MOS and DMOS: ASR Data Speaker Augmentation



Evaluation: Dialect

● Dialect: Multiple choice from set of VCTK dialects
○ References provided for listeners

○ Frobenius distance between synthesized speech and natural 

speech of confusion matrices of dialects
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Results: Dialects
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Results: Dialects
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Results: Dialects
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Audio Samples

Natural speech

Phone baseline

phone 5c+CL+DE3

31



Conclusions

● We investigated artificial speaker augmentation (VTLP) and speaker augmentation 

using real data from lower-quality corpora

● We revised the postnet and encoder of Tacotron to support channel and dialect 

variations from the low-quality data

● Use of low-quality data with a variety of speakers and dialects is an effective 

augmentation strategy

● Contrary to our initial expectations, naturalness of seen speakers has been improved

● Listeners’ ratings of perceived dialects are better matched to natural speech for 

unseen speakers
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Thank You!
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Audio samples: 

https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/augment.html

GitHub: 

https://github.com/nii-yamagishilab/multi-speaker-tacotron


