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Investigation

• Can the objective assessment metrics predict human

judgements on naturalness and speaker similarity?

• Which voice conversion (VC) technology has the highest

spoofing risk for automatic speaker verification (ASV) and

spooofing countermeasure (CM)?



Need of Objective Assessments

• Complementary to listening tests

• Less time consuming than listening tests 

• Cost effective than large crowd sourcing listening tests
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ASV Vulnerability to Spoofing Attacks



Spoofing Countermeasures

ASVspoof Challenge
https://www.asvspoof.org

Research on Spoofing 
Countermeasures for attacks 

derived using

Voice conversion (VC)
Text-to-speech (TTS)

Replay speech



Objective evaluation techniques
Automatic speaker verification (ASV) - speaker similarity

• x-vector based speaker embedding  [1]

• PLDA for scoring & cosine similarity of speaker embeddings

Spoofing countermeasure (CM) - real vs. fake assessment

• Light CNN system [2] with LFCC features

• Trained on ASVspoof 2019 logical access corpus training set

Automatic mean opinion score (MOSNet) - quality

• CNN-LSTM with magnitude spectrum as input, following [3]

• Training data: VCC2018/ASVspoof2019

Automatic speech recognition (ASR) - intelligibility
• A prototype system by iFlytek: Seq2seq with attention [4]
• 10,000-hrs recordings for AM / GB-level texts for LM modeling

[1] https://kaldi-asr.org/models/m7

[2] G. Lavrentyva, S. Novoselov, A. Tseren, M. Volkova, A. Gorlanov, and A. Kozlos, “STC antispoofing systems for the ASVspoof2019 challenge,” in 
Interspeech 2019, 2019, pp. 1033– 1037.

[3] C.-C. Lo, S.-W. Fu, W.-C. Huang, X. Wang, J. Yamagishi, Y. Tsao, H.-M. Wang, “MOSNet: Deep Learning-Based Objective Assessment 
   for Voice Conversion,” in Proc. Interspeech 2019, pp. 1541-1545

[4] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio, “End-to-end attention-based large vocabulary speech recognition,”
  in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2016, 2016, pp. 4945–4949.



Objective Evaluation Results



ASV - objective speaker similarity

LLR score

Kaldi VoxCeleb x-vector PLDA recipe

ASV system

Enrollment 
utterance(s)

Test utterance

Speaker 
similarity 
score

Natural 
different-
speaker trials

1

Natural same-
speaker trials

2

VC vs. target 
speaker trials

3

System-level VC success metric = 
overlap of 2  & 3  measured by Equal Error Rate (EER)2 3



ASV – Task 1

EER before VC ‘attacks’ (natural data) = 0.50%



ASV – Task 1

EER before VC ‘attacks’ (natural data) = 0.50%

EER (target vs. VC) 

VC false accept rate
(ASV: VC=target)

High speaker similarity Low speaker similarity



ASV – Task 1

EER before VC ‘attacks’ (natural data) = 0.50%

EER (target vs. VC) 

VC false accept rate
(ASV: VC=target) Source miss rate (ASV: VC ≠ source)

• Top systems: ~100% false acceptance rate 
and ~50% EER (chance level) 

• Most VC systems de-identify source 
speaker successfully, in terms of ASV

High speaker similarity Low speaker similarity



ASV, Task 2 – similar trends

EER before VC ‘attacks’ (natural data) = 0.80%

High speaker similarity Low speaker similarity



Cosine similarity
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High similarity for most teams 



Around half of teams: EER > 30%

Only 3 teams showed EER < 10%
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MOSNet

Small variance (2.5-4.5)
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Automatic speech recognition
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Around half of teams: WER < 20%

High intelligibility Low intelligibility



Audio samples

Metric Description Score Src Trg VC

ASV Task 1, Team 22 
SEM2-TEM1-E30012

LLR=53.91285

CM Task 2, Team 22
SEF1-TGM1-E30009

CM score = 0.9984

MOSNet 
(asvspoof19)

Task 1, Team 14
SEM1-TEF1-E30013

MOS = 2.47

ASR Task 2, Team 18 
SEM2-TMM1-E30010 

WER = 91.67



Correlation with subjective results



Correlation with Subjective Test Results

• Can the metrics predict human judgements?

• Analysis 1: Draw scatter plots (appendix of paper)

• Analysis 2: Calculate Pearson correlation coefficients

ASV EER (%), task 1 MOS ASV EER (%), task 1 SIM

Lower correlation? Higher correlation?



Individual Pearson correlation coefficients

• Metrics with moderate (>0.5) coefficients for quality:

Task 1: ASV (EER, Pfa), MOSNet (vcc18, asvspoof19), ASR WER

Task 2: cosine distance, MOSNet (asvspoof19), ASR WER

• Why do ASV and cosine distance show high correlation?

• Human Judgements on quality and similarity are not
independent!



Individual Pearson correlation coefficients

• Metrics with moderate (>0.5) coefficients for similarity:

Task 1: ASV (EER, Pfa), cosine distance,
       MOSNet (vcc18, asvspoof19)

Task 2: ASV (EER, Pfa), cosine distance

• High correlation of MOSNet underpin that human 
Judgements on quality and similarity are not
independent.



Prediction of Subjective Evaluation Results 
by Objective Metrics Combinations

• Significant explainable variables for MOS:

Task 1: ASV EER, ASR WER
Task 2: MOSNet (asvspoof19), ASR WER

• Significant explainable variables for SIM:

Task 1 & 2: ASV EER only
➜ ASV EER itself has sufficiently high correlation.

• Overall, consistent with previous analysis.



Prediction of Subjective Evaluation Results 
by Objective Metrics Combinations

• Prediction accuracy of quality can be improved by 
combining multiple objective metrics.

– By comparing adjusted R-squared values with the individual 
Pearson correlation coefficients.

• Task 2 MOS has lowest adjusted R-squared values

– Least explainable by the metrics.

– Predicting cross-lingual quality is harder.



Spoofing performance assessment



Tandem detection cost function (t-DCF)

T. Kinnunen, H. Delgado, N. Evans, K.A. Lee, V. Vestman, A. Nautsch, M. Todisco, X. Wang, M. Sahidullah, J. Yamagishi, D.A. 
Reynolds, “Tandem Assessment of Spoofing Countermeasures and Automatic Speaker Verification: Fundamentals”, 
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2195-2210, 2020
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Systems with highest t-DCF: two patterns

Task 1

Team ID ASV EER CM EER VC Model Vocoder

T06 0.00 14.77 StarGAN WORLD

T08 0.50 37.97 VTLN + Spectral differential WORLD

T12 0.00 31.46 ADAGAN AHOcoder

T14 1.00 61.96 One-shot VC NSF

T28 34.50 32.70 Tacotron WaveRNN

Task 2

Team ID ASV EER CM EER VC Model Vocoder

T08 0.08 46.64 VTLN + Spectral differential WORLD

T22 30.82 42.97 ASR-TTS (Transformer) Parallel WaveGAN

T10 45.55 49.81 PPG-VC (LSTM) WaveNet

T19 44.00 38.35 VQVAE Parallel WaveGAN

T23 32.82 53.67 CycleVAE WaveNet

Attacks that do not fool ASV but CM fails to discriminative (=user inconvenience)
Attacks that fool both ASV and CM (=compromised security)



Take-home messages

1. ASV and ASR: high correlation with
subjective rating

2. MOSNet: better predictions when trained 
with ASVspoof 2019 data

3. Spoofing countermeasure: less correlation 

Useable

Potential

Potential

All the metrics are at system level

Spoofing threat

Correlation with subjective ratings

Both traditional and neural vocoders require attention

Limitations
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