Reverberation Modeling for Source-Filter-based Neural Vocoder

Yang Ai¹, Xin Wang², Junichi Yamagishi^{2,3}, Zhen-Hua Ling¹

¹NELSLIP, University of Science and Technology of China, Hefei, P.R.China

²National Institute of Informatics, Japan ³CSTR, University of Edinburgh, UK

Paper ID: 1613, INTERSPEECH 2020

Contents

- Background
- Review of previous work
- Theory
- Experiments
- Demos

Background

- Audio signals captured for real-life applications typically contain room reverberation;
- The reverberation poses a challenge to nonautoregressive neural vocoders, and the quality of synthesized speech usually degrades because there is no special module for reverberation modeling;
- Towards robust reverberation modeling for speech data, we proposed a trainable reverberation module for neural vocoders.

Review of previous work

• HiNet:

[1] Y. Ai and Z.-H. Ling, "A neural vocoder with hierarchical generation of amplitude and phase spectra for statistical parametric speech synthesis," IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 839–851, 2020.

Review of previous work

• HiNet:

• PSP is based on neural source-filter (NSF) model [2]

[2] X.Wang, S. Takaki, and J. Yamagishi, "Neural source-filter-based waveform model for statistical parametric speech synthesis," in Proc. ICASSP, 2019, pp. 5916–5920.

- Reverberation theory
 - A reverberant signal $\mathbf{r} = [r_1, ..., r_T]^T$ can be calculated by convolving clean signal $\mathbf{d} = [d_1, ..., d_T]^T$ with room impulse response (RIR) $\mathbf{h} = [h_1, ..., h_L]^T$:

Time domain convolution:

$$r=d*h$$
 (1)

Equivalently, frequency domain multiplication

$$\mathbf{r} = \mathcal{F}^{-1}[\mathcal{F}(\mathbf{d}) \cdot \mathcal{F}(\mathbf{h})] \tag{2}$$

- HiNet with Reverberation
 - Only change PSP

- HiNet with Reverberation
 - Only change PSP
 - Two ways to predict h

- HiNet with Reverberation
 - Normal way of training:

- HiNet with Reverberation
 - Multi-task training: if natural dry waveform exists

- HiNet with Reverberation
 - Multi-task training: if natural dry waveform exists

Data and feature configuration

- Datasets: A multi-speaker reverberant speech database
 - Train set (11012 utterances) + validation set (560 utterances):
 - Including 28 speakers and 18 reverberation types
 - Test set (3 test scenarios):
 - **T**1: Two unseen speakers' reverberant data with 6 unseen reverberation types (824 utterances);
 - **T**2: Two unseen speakers' reverberant data with the same 18 reverberation types as in the training set (832 utterances);
 - **T**3: Dry speech version of **T**1.
- Acoustic features
 - Including: 80-dimensional mel-spectrogram, an F0, and a voiced/unvoiced flag.

Experimental models

- **N-BL**: The harmonic-plus-noise NSF model^[3] without reverberation module.
- H-BL: Baseline HiNet vocoder without reverberation module.
- **H-GTI**: HiNet with the GTI-RIR-based reverberation module integrated into PSP.
- **H-UTV**: HiNet with the UTV-RIR-based reverberation module integrated into the PSP.
- H-UTV-MT: same as H-UTV but with the secondary task using dry waveforms during training.
 - Note: We use P-* and P-*(dry) to represent the reverberant waveform and dry waveform predicted by PSP in H-*, respectively.

[3] X. Wang and J. Yamagishi, "Using cyclic noise as the source signal for neural source-filter-based speech waveform model," arXiv preprint arXiv:2004.02191, 2020.

Objective experiments

- T60 estimation errors for utterances with T60n = 0.362s under test scenario T1
 - T60 is used to measure the reverberation effect and we used an open source toolkit^[4] to blindly estimate T60 from the reverberant speech
 - T60 estimation error = estimated T60 ground-truth T60 (T60n)

[4] M. Jeub, "Blind reverberation time estimation," 2015. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/35740-blind-reverberation-time-estimation.

P-BL: output waveform of PSP **without** reverberation

P-GTI: output waveform of PSP with global constant reverberation

P-UTV: output waveform of PSP with utterance variant reverberation

P*: output waveforms from PSP

H*: output waveforms from PSP + ASP (full HiNet models)

the ASP can also model the reverberation effect

N-BL: output waveform of NSF without reverberation

H-BL: output waveform of HiNet without reverberation in PSP

Subjective experiments

- Similarity test on the reverberation effect
 - Score is from 1 to 9
 - A higher score denoted a reverberation effect more similar to that in the natural reverberant audio tracks.
- MUSHRA test on speech quality
 - Score is from 0 to 100
 - A higher score denoted higher speech quality

P-BL: output waveform of PSP **without** reverberation

P-GTI: output waveform of PSP with **global constant reverberation**

P-UTV: output waveform of PSP with utterance variant reverberation

P-BL: output waveform of PSP **without** reverberation

P-GTI: output waveform of PSP with **global constant reverberation**

P-UTV: output waveform of PSP with utterance variant reverberation

P-BL: output waveform of PSP **without** reverberation

P-GTI: output waveform of PSP with global constant reverberation

P-UTV: output waveform of PSP with utterance variant reverberation

P-BL: output waveform of PSP without reverberation

P-BL

P-GTI: output waveform of PSP with **global constant reverberation**

P-GTI(dry)

P-UTV: output waveform of PSP with utterance variant reverberation

P-UTV-MT: output waveform of PSP with utterance variant reverberation using multi-target training

P-UTV(dry)

Systems

P-UTV-MT(dry)

Experiments-MUSHRA test results

N-BL: output waveform of NSF without reverberation

H-BL: output waveform of HiNet without reverberation in PSP

H-GTI: output waveform of HiNet with global constant reverberation in PSP

H-UTV: output waveform of HiNet with utterance variant reverberation in PSP

H-UTV-MT: output waveform of HiNet with utterance variant reverberation using multi-target

Experiments-MUSHRA test results

N-BL: output waveform of NSF without reverberation

H-BL: output waveform of HiNet without reverberation in PSP

H-GTI: output waveform of HiNet with global constant reverberation in PSP

H-UTV: output waveform of HiNet with utterance variant reverberation in PSP

Experiments-MUSHRA test results

N-BL: output waveform of NSF without reverberation

H-BL: output waveform of HiNet without reverberation in PSP

H-GTI: output waveform of HiNet with global constant reverberation in PSP

H-UTV: output waveform of HiNet with utterance variant reverberation in PSP

Demos

The output waveform of PSPs

	Test scenario T 1		
Natural Reverb	4	4	
P-UTV-MT	4	4 (
P-UTV	4 (4 (
P-GTI	4 <	4	
P-BL	4	4	
P-GTI(dry)	4 (4	
P-UTV(dry)	4	4	
P-UTV-MT(dry)	4	4	
Natural Clean	4	4	

Note that:

- 1. the quality of the waveforms is not good because it is just used to extract the phase spectra (not the final waveform).
- 2. Please only focus on the reverberation effects.

P-BL: output waveform of PSP **without** reverberation

P-GTI: output waveform of PSP with **global constant reverberation**

P-UTV: output waveform of PSP with

utterance variant reverberation

Demos

The output waveform of NSF and HiNets

	Test scenario T 1		Test scenario T 3	
Natural	4 (4 <	4 <	4 <
N-BL	4 <	4 <	4 <	4 <
H-BL	4	4	€	4 <
H-GTI	4 <	4 <	4 <	4 ×
H-UTV	4	4	4 ×	4 ×
H-UTV-MT	4	4	4 ×	<u> </u>

N-BL: output waveform of NSF **without** reverberation

H-BL: output waveform of HiNet

without reverberation in PSP

H-GTI: output waveform of HiNet

with **global constant reverberation** in

PSP

H-UTV: output waveform of HiNet

with utterance variant reverberation

in PSP

H-UTV-MT: output waveform of

HiNet with utterance variant

reverberation using multi-target

training in PSP

More demos: http://home.ustc.edu.cn/~ay8067/reverb/demo.html