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◼ Transform low-quality speech into high-quality ones (Speech Enhancement)

◼ Low-quality recording features: background noise, room reverb, and bad microphone

response.

◼ These factors are jointly considered. We collectively refer to as the channel factor.

◼ Enhance these recordings by simultaneously removing noise, reverb, and also applying

pleasing audio effect via a unified network

◼ Explore TTS techniques on speech enhancement task

◼ Regard SE as a style transfer task, from low quality style to high quality

◼ Apply neural waveform model to synthesize speech, instead of using ISTFT

Goal of this paper
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◼ Encoder

◼ Filter out the channel characteristics from 

the original input audio

◼ Channel Modeling

◼ Disentangle the channel factor from a 

reference audio

◼ Decoder

◼ Predict the target-style Mel spectrogram, 

conditioned on extracted channel factor

Overview of system diagram
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◼ WaveRNN vocoder

◼ Generate target-style waveform (professional high-quality recording)



◼ Encoder

◼ Filter out the channel characteristics from 

the original input audio

◼ Consists of 2-D CNNs+BLSTM

Component details
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◼ Adversarial training

◼ Add channel classifier #1 to encourage encoder 

to produce channel-invariant features



◼ Channel modeling

◼ Disentangle the channel factor from a 

reference audio

Component details
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◼ Additional classifiers

◼ Channel classifier #2 used to encourage 

extracted channel factor to be more informative 

about channel information

◼ Speaker classifier used for adversarial training, 

to filter out the remained speaker information 

from the channel factor



◼ Channel modeling

◼ Shares a similar network structure with 

“Global Style Tokens”

Component details
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◼ Design an interpretable and controllable channel modeling module. (e.g., Token A might 

represent reverb level, Token B represents noise level, etc.)



◼ Channel modeling

◼ Shares a similar network structure with 

“Global Style Tokens”

Component details
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◼ Design an interpretable and controllable channel modeling module. (e.g., Token A might 

represent reverb level, Token B represents noise level, etc.)

◼ Pros

◼ Enables module to deal with the unseen channel condition and unlabeled reference audio

◼ Controllable style transfer by adjusting weights of learned tokens

◼ Cons

◼ Need an additional provided reference audio

◼ Bad performance if channel factor not accurate



◼ Decoder

◼ Predict the target-style Mel 

spectrogram, conditioned on extracted 

channel factor

◼ Similar structure with Tacotron2-

Decoder, including Prenet, Postnet, 

and auto-regressive generation

◼ WaveRNN vocoder

◼ A pre-trained universal WaveRNN 

vocoder

Component details
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◼ Dataset

◼ DAPS (device and produced speech) dataset

◼ It provides aligned recordings of high-quality speech and a number of versions of low-

quality speech, recorded in noisy environment with cheap device.

◼ Two unseen speakers (1 male + 1 female), and three unseen channels are used for 

testing: (1) ipad_livingroom, (2) ipadflat_office, and (3) iphone_bedroom

Experiments
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◼ Ablation study

◼ ED: contains only encoder and decoder

◼ ED+CM: contains encoder, decoder, and channel 

modelling

◼ FULL (ED+CM+Classifiers): contains encoder, 

decoder, channel modelling, and 3 auxiliary 

classifiers

◼ Linear+ISTFT: Same settings with FULL model, 

except the decoder output was linear spectrogram. 

Use ISTFT to synthesize waveform

Experiments
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◼ Other compared methods

◼ Raw audio: lower bound

◼ Studio audio: higher bound

◼ WPE: signal-processing method for speech dereverberation

◼ WPE+LogMMSE: signal-processing method for speech dereverberation + denoising

◼ WaveNet [1]: Denoising-WaveNet model

Experiments
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◼ FULL consistently improves its two 

simplified versions, ED and ED+CM, and 

other compared methods (WPE, WPE+L, 

and WaveNet)

◼ FULL system worse than Linear-ISTFT in 

terms of CBAK and COVL

◼ Objective metrics usually give lower 

scores to vocoder-generated waveform

Objective results
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◼ Conducted crowdsourced listening 

tests, 165 individuals rated quality for 

given samples with 5-point MOS score

◼ FULL gives best performance.

◼ FULL > Linear-ISTFT, means 

WaveRNN improves the quality of the 

synthetic waveform, compared with 

ISTFT

Subjective results
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◼   Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021/



◼ Speech enhancement: Transfer low-quality to high-quality style

◼ Can we transfer speech into arbitrary style by designating a corresponding 

reference audio?

Beyond enhancement:  Audio effect transfer
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◼ Channel Modeling module extracts 

channel factors from 3 unseen recording 

(channel) conditions

◼ Can discriminate unseen reference audios 

and produce representative factors

Visualization of learned channel factors
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◼ Control transferred effect from less 

reverberant to more reverberant by linear 

interpolation of two pre-computed channel 

factors:

◼  and  denote the channel factors 

extracted from a professional studio 

recording and iphone bedroom recording

◼     is the scale value that ranges from 0 to 1

An example of flexible control on transferred style

16



◼ Apply style transfer approach into speech enhancement task, in which we jointly 

denoising, dereverberation, and applying pleasing audio effect to low-quality recordings

◼ System outperforms one time-domain model (Denoising-WaveNet) and several signal-

processing baselines.

◼ Mel+WaveRNN waveform synthesis module outperforms Linear+ISTFT in subjective 

evaluations

◼ However…

◼ Still require expensive parallel recordings for training -> Expanded to non-parallel style transfer?

◼ Although we can transfer any channel characteristics within this framework, but in practice 

people most commonly want clean channel characteristics only.

Conclusion
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Thanks!
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