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Goal of this paper

. Transform low-quality speech into high-quality ones (Speech Enhancement)

. Low-quality recording features: background noise, room reverb, and bad microphone

response.
. These factors are jointly considered. We collectively refer to as the channel factor.

. Enhance these recordings by simultaneously removing noise, reverb, and also applying

pleasing audio effect via a unified network

. Explore TTS techniques on speech enhancement task
« Regard SE as a style transfer task, from low quality style to high quality

« Apply neural waveform model to synthesize speech, instead of using ISTFT
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Component details
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« Add channel classifier #1 to encourage encoder

to produce channel-invariant features



Component details

. Reference audio
« Channel modeling (e.g. studio quality)”

. Disentangle the channel factor from a

reference audio

Low-quality

input audio
- Additional classifiers

« Channel classifier #2 used to encourage
extracted channel factor to be more informative

about channel information

. Speaker classifier used for adversarial training,
to filter out the remained speaker information

from the channel factor
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Component details ' Channel token layer
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Component details

« Channel modeling

= Shares a similar network structure with

“Global Style Tokens”
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. Design an interpretable and controllable channel modeling module. (e.g., Token A might

represent reverb level, Token B represents noise level, etc.)

= Pros

= Enables module to deal with the unseen channel condition and unlabeled reference audio

. Controllable style transfer by adjusting weights of learned tokens

= Cons

. Need an additional provided reference audio

» Bad performance if channel factor not accurate
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Component details

Reference audio

. Decoder (e.g. studio quality)

. Predict the target-style Mel
spectrogram, conditioned on extracted

channel factor input audio

= Similar structure with Tacotron2-
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Experiments

= Dataset

- DAPS (device and produced speech) dataset

. It provides aligned recordings of high-quality speech and a number of versions of low-

quality speech, recorded in noisy environment with cheap device.

. Two unseen speakers (1 male + 1 female), and three unseen channels are used for

testing: (1) ipad_livingroom, (2) ipadflat_office, and (3) iphone bedroom



Experiments
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(e.g. studio quality)

. Ablation study
- ED: contains only encoder and decoder

. ED+CM: contains encoder, decoder, and channel

input audio
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« Linear+ISTFT: Same settings with FULL model|,
except the decoder output was linear spectrogram.

Use ISTFT to synthesize waveform
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Experiments

« Other compared methods

Raw audio: lower bound

Studio audio: higher bound

WPE: signal-processing method for speech dereverberation

WPE+LogMMSE: signal-processing method for speech dereverberation + denoising

WaveNet [1]: Denoising-WaveNet model

[1] Jiagi Su, Adam Finkelstein, and Zeyu Jin, “Perceptually-motivated environment-specific speech enhancement,” in ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7015-7019



Objective results

- FULL consistently improves its two
simplified versions, ED and ED+CM, and
other compared methods (WPE, WPE+L,
and WaveNet)

« FULL system worse than Linear-ISTFT in
terms of CBAK and COVL

» Objective metrics usually give lower

scores to vocoder-generated waveform

System CSIG CBAK COVL STOI
Raw audio 3.05 2.23 2.60 0.869
WPE 3.16 2.41 2.75 0.888
WPE+L 2.81 2.33 2.52 0.811
Wavenet 3.67 2.42 3.08 0.904
Linear-ISTFT 3.94 2.61 3.37 0.905
ED 3.89 2.48 3.28 0.906
ED+CM 3.73 2.49 3.16 0.886
FULL 3.94 2.52 3.34 0.906
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Subjective results

» Conducted crowdsourced listening

tests, 165 individuals rated quality for s.0; T + :
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Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/evr-s|t2021/



Beyond enhancement: Audio effect transfer

. Speech enhancement: Transfer low-quality to high-quality style

. Can we transfer speech into arbitrary style by designating a corresponding

reference audio?
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Visualization of learned channel factors

« Channel Modeling module extracts
channel factors from 3 unseen recording

(channel) conditions

= Can discriminate unseen reference audios

and produce representative factors
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An example of flexible control on transferred style

= Control transferred effect from less

reverberant to more reverberant by linear
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Z2o=(1—a)* 2P 4 ax 2"

. zE"and 2P denote the channel factors

extracted from a professional studio

recording and iphone bedroom recording

(c) Transferred at « = 0.6 (d) Transferred at « = 1.0

« (is the scale value that ranges from 0 to 1
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Conclusion

. Apply style transfer approach into speech enhancement task, in which we jointly

denoising, dereverberation, and applying pleasing audio effect to low-quality recordings

. System outperforms one time-domain model (Denoising-WaveNet) and several signal-

processing baselines.

- Mel+WaveRNN waveform synthesis module outperforms Linear+ISTFT in subjective

evaluations

« However...

. Still require expensive parallel recordings for training -> Expanded to non-parallel style transfer?

. Although we can transfer any channel characteristics within this framework, but in practice

people most commonly want clean channel characteristics only.



Thanks!
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