

Enhancing Low-Quality Voice Recordings Using Disentangled Channel Factor and Neural Waveform Model

Haoyu Li¹, Yang Ai², and Junichi Yamagishi¹

¹National Institute of Informatics, Japan

²University of Science and Technology of China, P.R.China

IEEE SLT 2021

Goal of this paper

- Transform low-quality speech into high-quality ones (Speech Enhancement)
 - Low-quality recording features: background noise, room reverb, and bad microphone response.
 - These factors are jointly considered. We collectively refer to as the **channel factor**.
 - Enhance these recordings by simultaneously removing noise, reverb, and also applying pleasing audio effect via a unified network
- Explore TTS techniques on speech enhancement task
 - Regard SE as a style transfer task, from low quality style to high quality
 - Apply neural waveform model to synthesize speech, instead of using ISTFT

Overview of system diagram

- **Encoder**

- Filter out the channel characteristics from the original input audio

- **Channel Modeling**

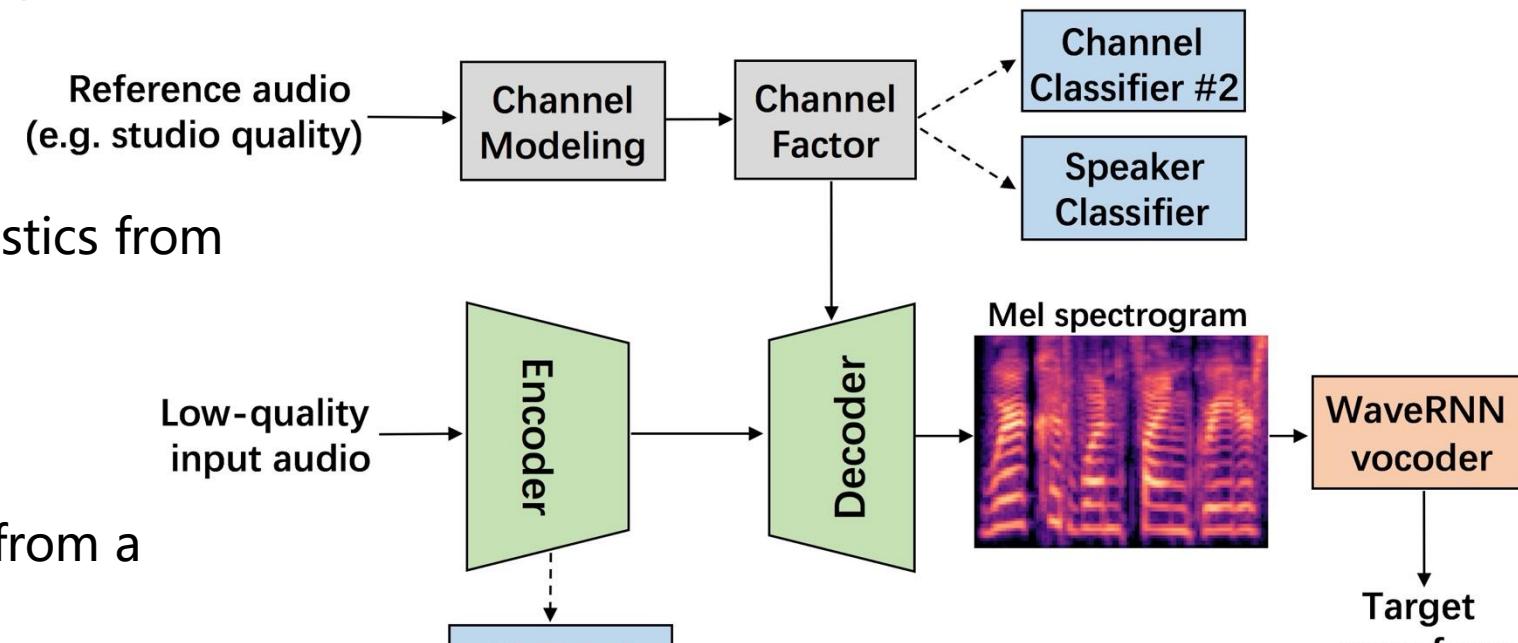
- Disentangle the channel factor from a reference audio

- **Decoder**

- Predict the target-style Mel spectrogram, conditioned on extracted channel factor

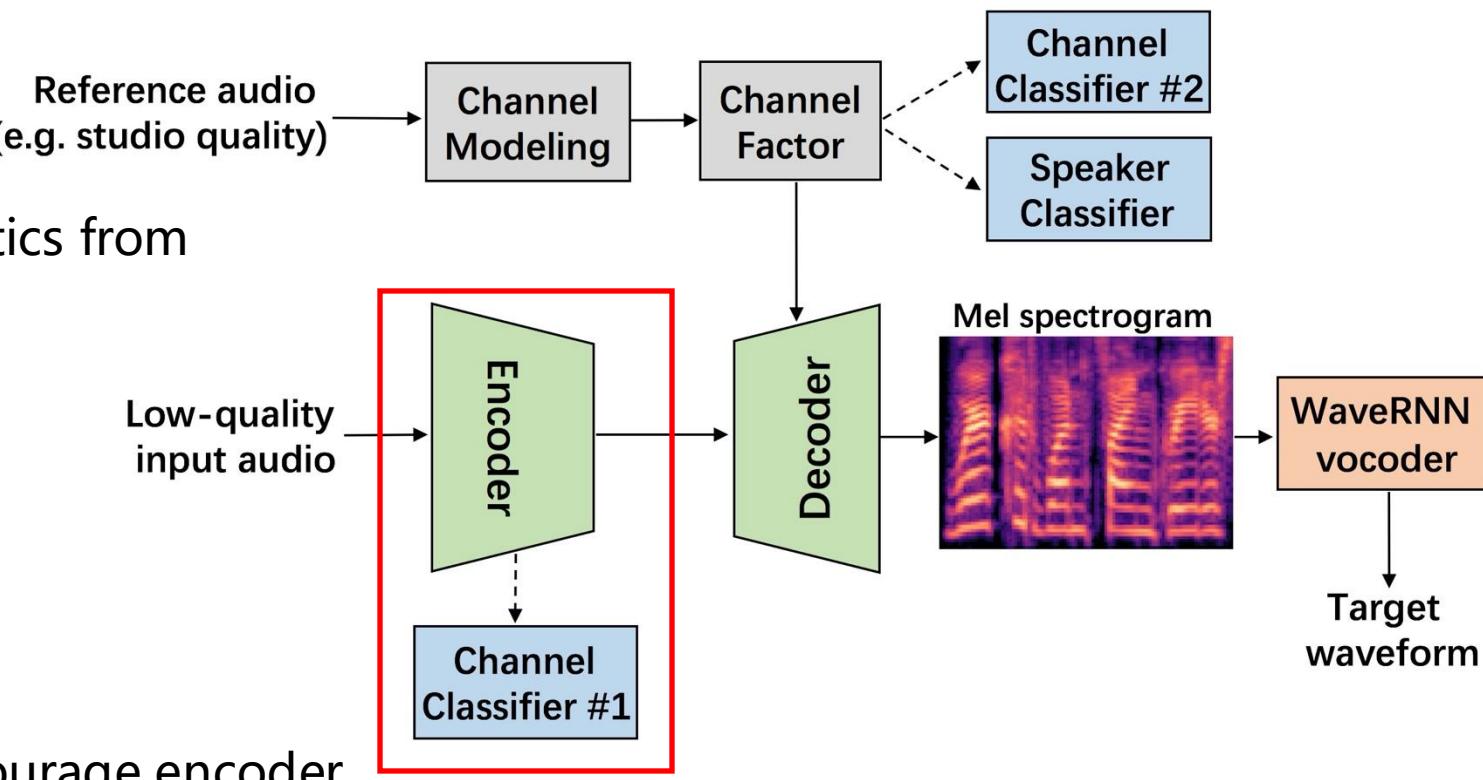
- **WaveRNN vocoder**

- Generate target-style waveform (professional high-quality recording)



Component details

- **Encoder**
 - Filter out the channel characteristics from the original input audio
 - Consists of 2-D CNNs+BLSTM



- **Adversarial training**

- Add channel classifier #1 to encourage encoder to produce channel-invariant features

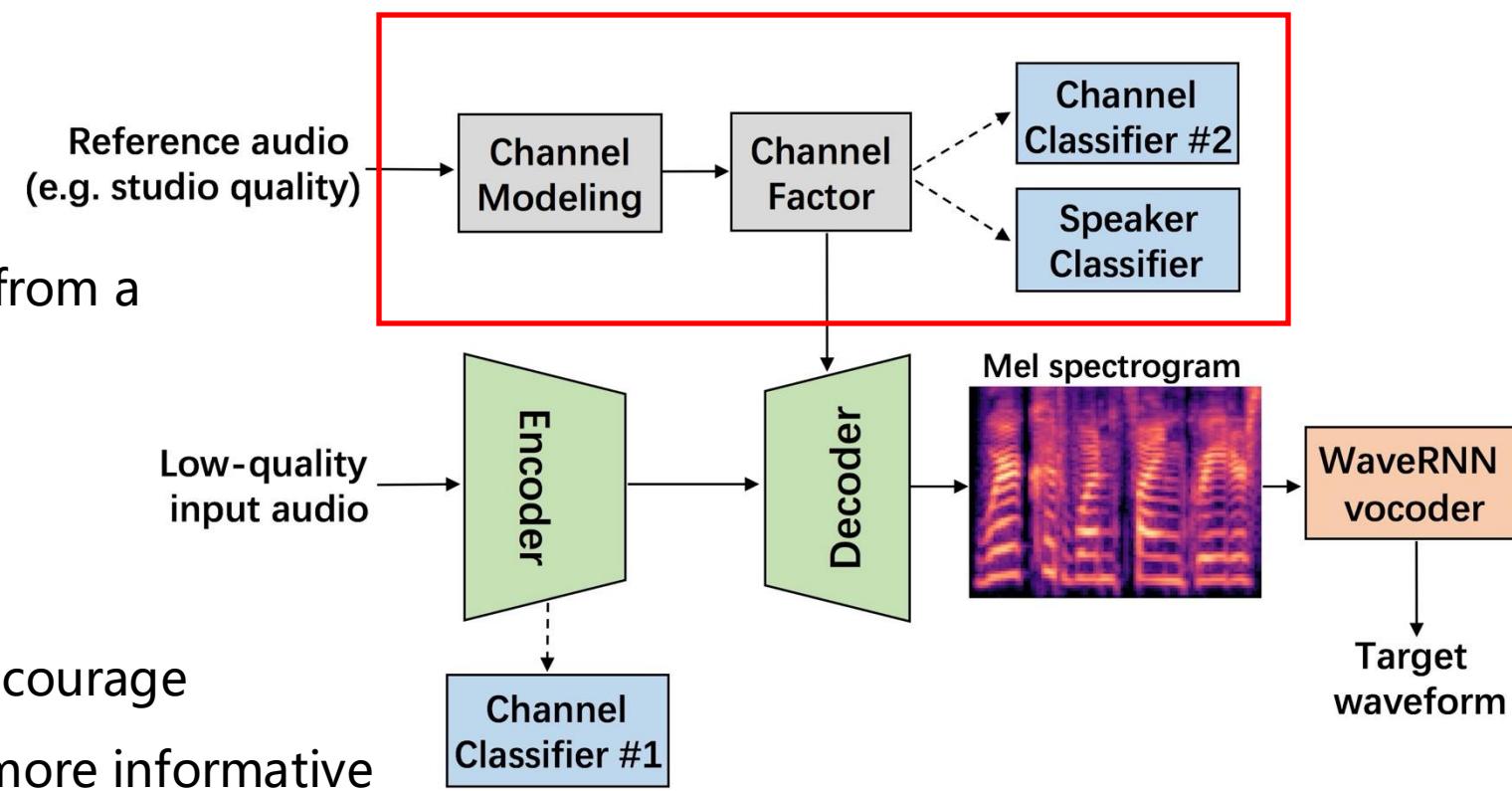
Component details

- **Channel modeling**

- Disentangle the channel factor from a reference audio

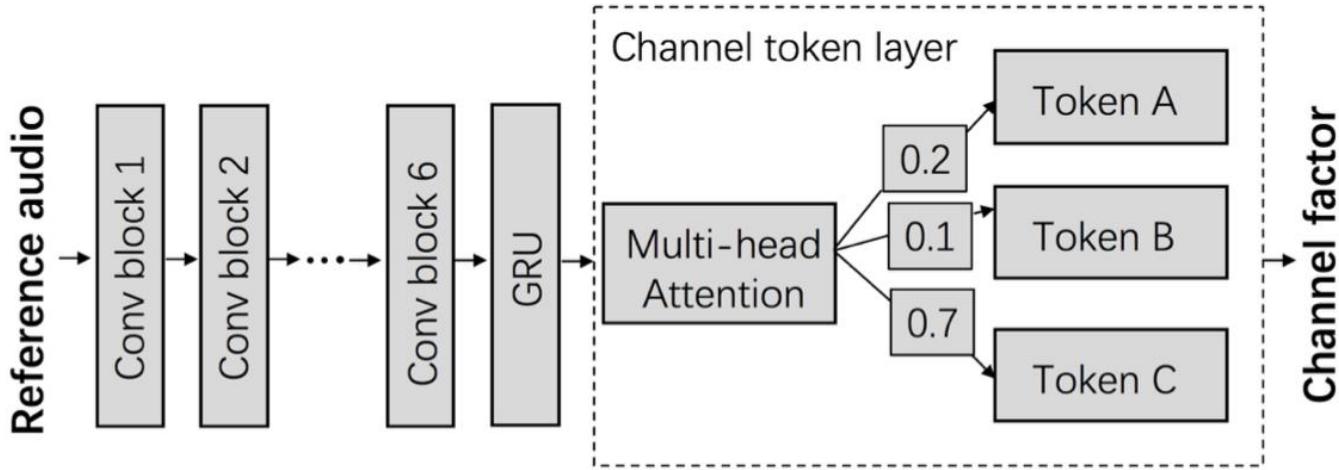
- **Additional classifiers**

- Channel classifier #2 used to encourage extracted channel factor to be more informative about channel information
 - Speaker classifier used for adversarial training, to filter out the remained speaker information from the channel factor



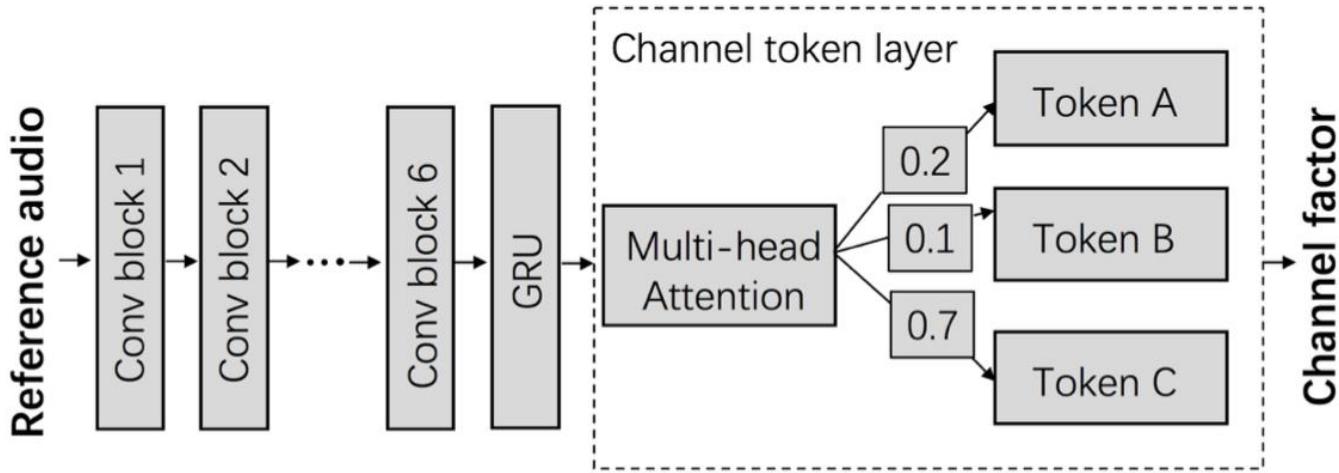
Component details

- **Channel modeling**
 - Shares a similar network structure with “Global Style Tokens”
 - Design an interpretable and controllable channel modeling module. (e.g., Token A might represent reverb level, Token B represents noise level, etc.)



Component details

- **Channel modeling**
 - Shares a similar network structure with “Global Style Tokens”
 - Design an interpretable and controllable channel modeling module. (e.g., Token A might represent reverb level, Token B represents noise level, etc.)
- **Pros**
 - Enables module to deal with the unseen channel condition and unlabeled reference audio
 - Controllable style transfer by adjusting weights of learned tokens
- **Cons**
 - Need an additional provided reference audio
 - Bad performance if channel factor not accurate



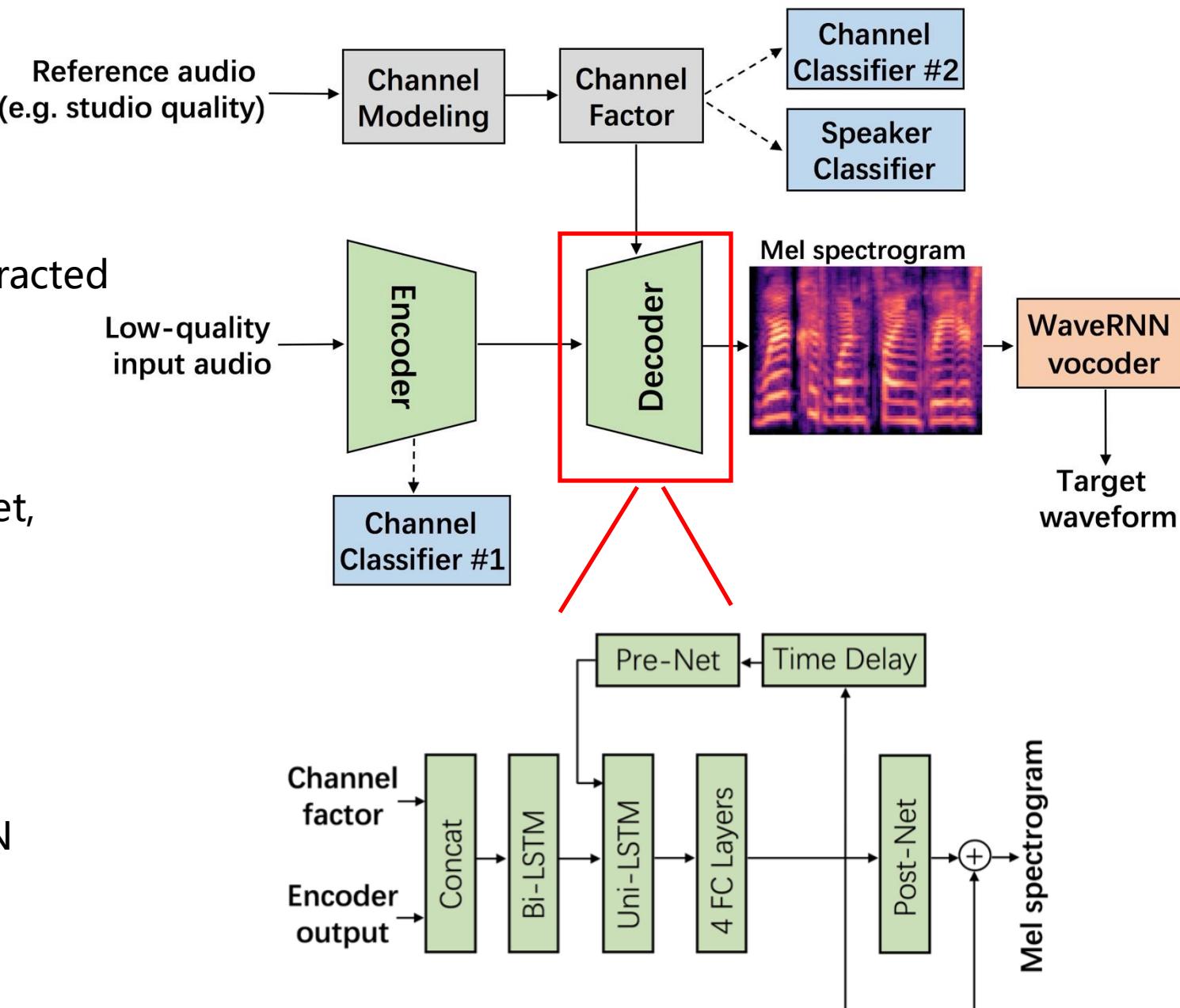
Component details

- Decoder

- Predict the target-style Mel spectrogram, conditioned on extracted channel factor
- Similar structure with Tacotron2-Decoder, including Prenet, Postnet, and auto-regressive generation

- WaveRNN vocoder

- A pre-trained universal WaveRNN vocoder



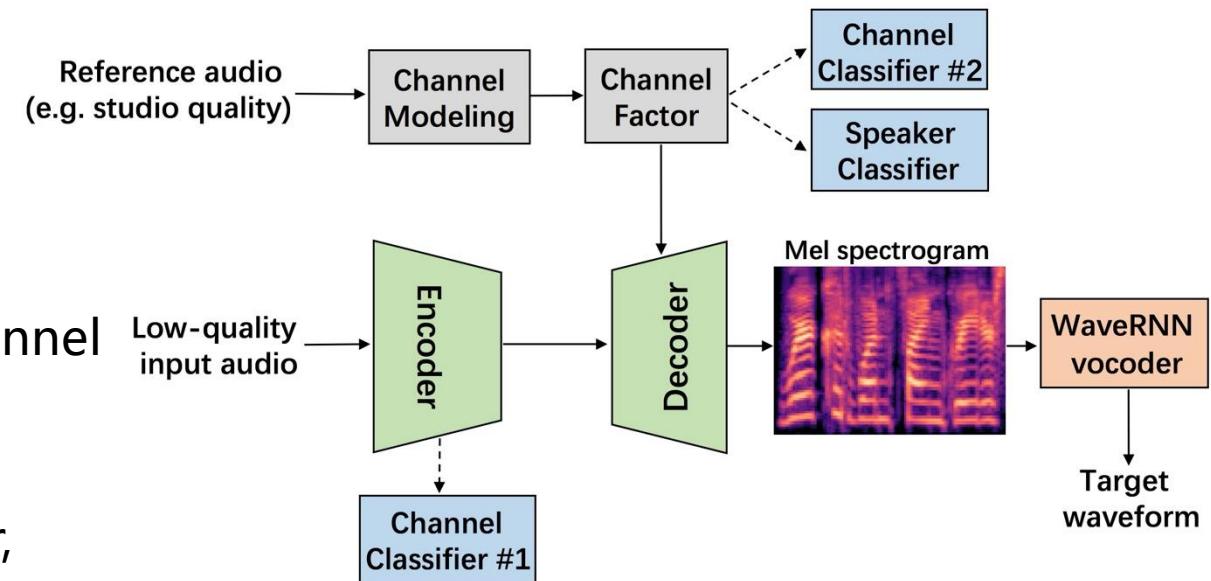
Experiments

- **Dataset**
 - DAPS (device and produced speech) dataset
 - It provides aligned recordings of high-quality speech and a number of versions of low-quality speech, recorded in noisy environment with cheap device.
 - Two unseen speakers (1 male + 1 female), and three unseen channels are used for testing: (1) `ipad_livingroom`, (2) `ipadflat_office`, and (3) `iphone_bedroom`

Experiments

- **Ablation study**

- **ED**: contains only encoder and decoder
- **ED+CM**: contains encoder, decoder, and channel modelling
- **FULL (ED+CM+Classifiers)**: contains encoder, decoder, channel modelling, and 3 auxiliary classifiers
- **Linear+ISTFT**: Same settings with **FULL** model, except the decoder output was linear spectrogram.
Use ISTFT to synthesize waveform



Experiments

- Other compared methods
 - **Raw audio**: lower bound
 - **Studio audio**: higher bound
 - **WPE**: signal-processing method for speech dereverberation
 - **WPE+LogMMSE**: signal-processing method for speech dereverberation + denoising
 - **WaveNet** [1]: Denoising-WaveNet model

[1] Jiaqi Su, Adam Finkelstein, and Zeyu Jin, “Perceptually-motivated environment-specific speech enhancement,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7015–7019

Objective results

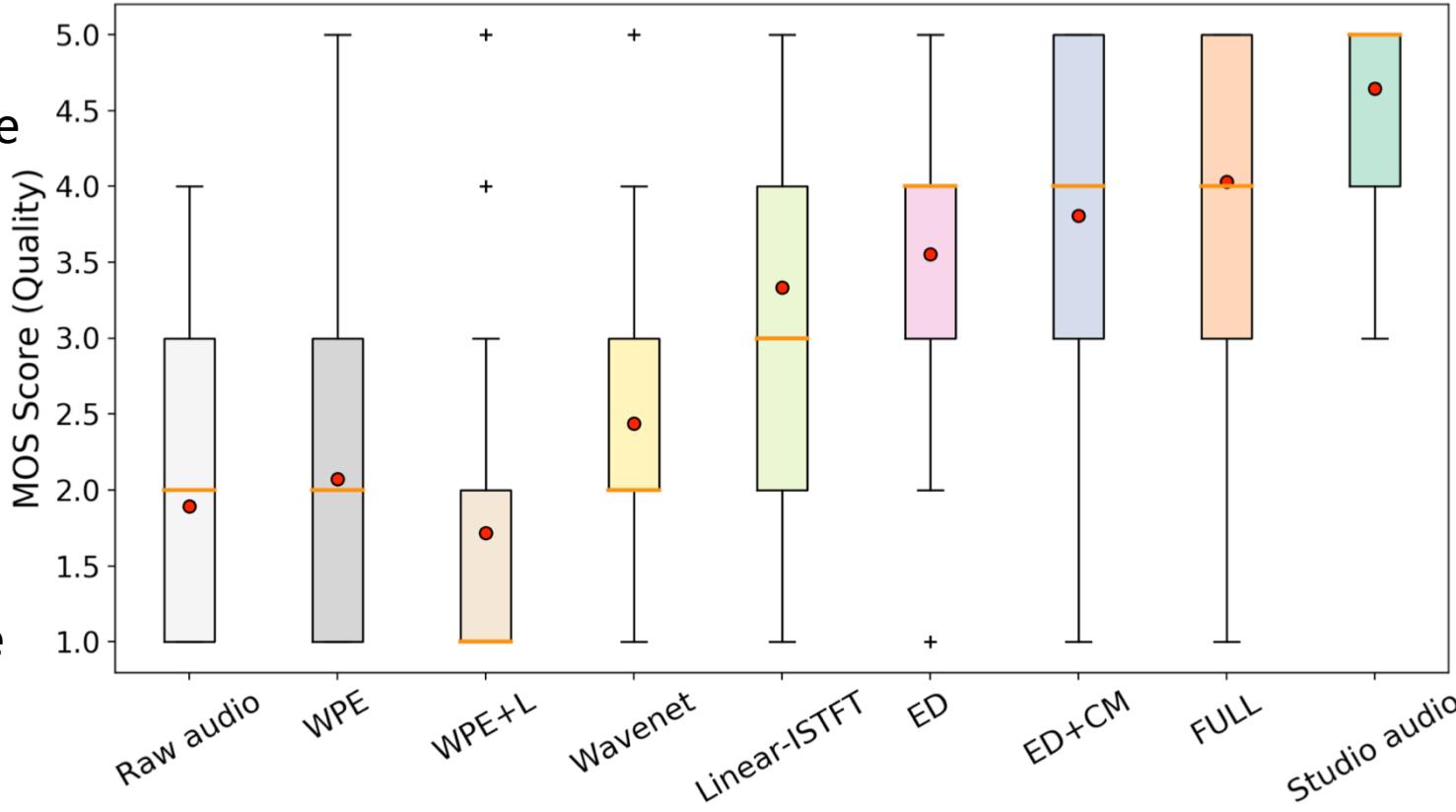
- **FULL** consistently improves its two simplified versions, **ED** and **ED+CM**, and other compared methods (**WPE**, **WPE+L**, and **WaveNet**)
- **FULL** system worse than **Linear-ISTFT** in terms of CBAK and COVL
- Objective metrics usually give lower scores to vocoder-generated waveform

System	CSIG	CBAK	COVL	STOI
Raw audio	3.05	2.23	2.60	0.869
WPE	3.16	2.41	2.75	0.888
WPE+L	2.81	2.33	2.52	0.811
Wavenet	3.67	2.42	3.08	0.904
Linear-ISTFT	3.94	2.61	3.37	0.905
ED	3.89	2.48	3.28	0.906
ED+CM	3.73	2.49	3.16	0.886
FULL	3.94	2.52	3.34	0.906

Subjective results

- Conducted crowdsourced listening tests, 165 individuals rated quality for given samples with 5-point MOS score

- FULL** gives best performance.
- FULL** > **Linear-ISTFT**, means WaveRNN improves the quality of the synthetic waveform, compared with ISTFT



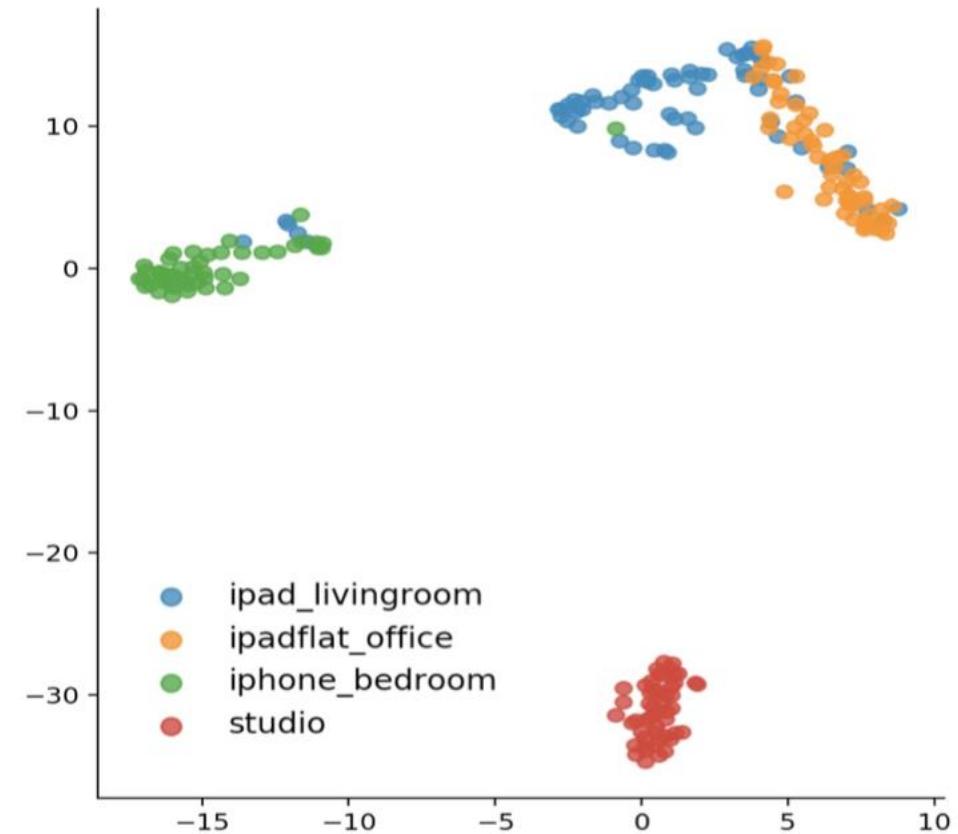
- Audio samples: <https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021/>

Beyond enhancement: Audio effect transfer

- Speech enhancement: Transfer low-quality to high-quality style
- Can we transfer speech into arbitrary style by designating a corresponding reference audio?

Visualization of learned channel factors

- Channel Modeling module extracts channel factors from 3 **unseen** recording (channel) conditions
- Can discriminate unseen reference audios and produce representative factors

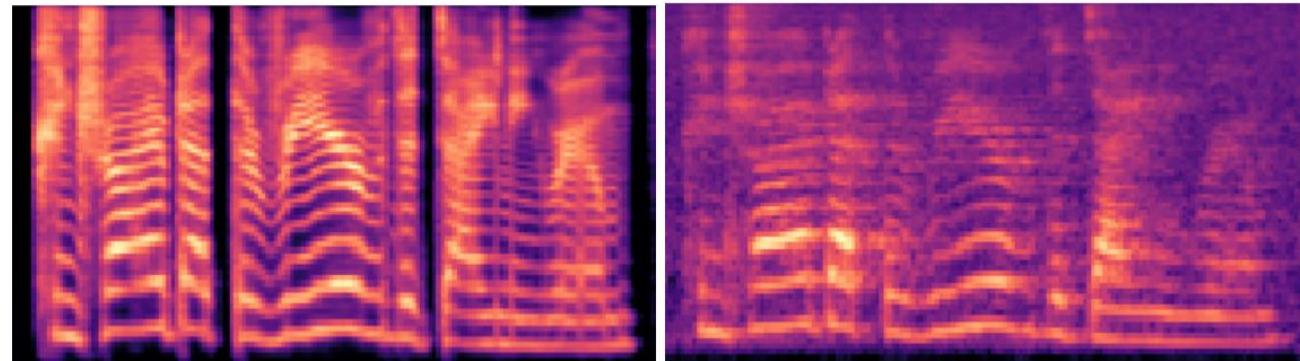


An example of flexible control on transferred style

- Control transferred effect from less reverberant to more reverberant by linear interpolation of two pre-computed channel factors:

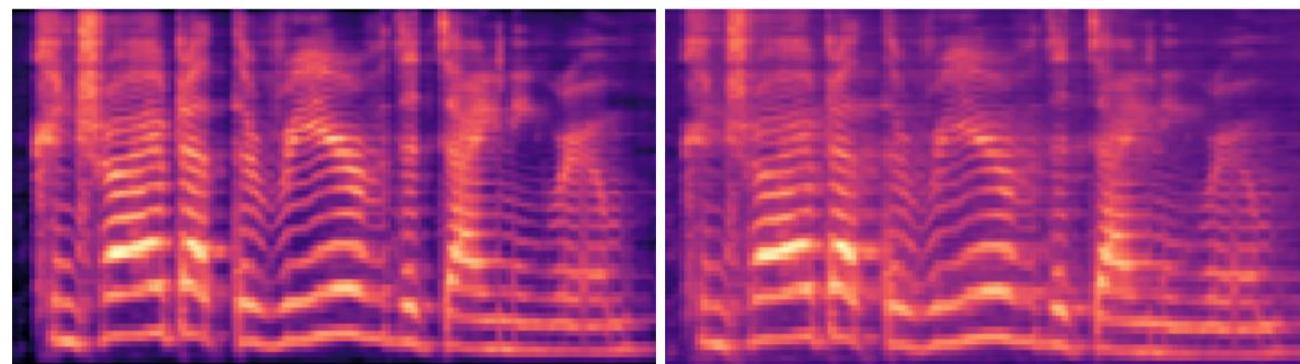
$$\hat{z}_c = (1 - \alpha) * z_c^{pro} + \alpha * z_c^{iph}$$

- z_c^{pro} and z_c^{iph} denote the channel factors extracted from a professional studio recording and iphone bedroom recording



(a) Studio

(b) Transfer target



(c) Transferred at $\alpha = 0.6$

(d) Transferred at $\alpha = 1.0$

- α is the scale value that ranges from 0 to 1

Conclusion

- Apply style transfer approach into speech enhancement task, in which we jointly denoising, dereverberation, and applying pleasing audio effect to low-quality recordings
 - System outperforms one time-domain model (Denoising-WaveNet) and several signal-processing baselines.
 - **Mel+WaveRNN** waveform synthesis module outperforms **Linear+ISTFT** in subjective evaluations
- However...
 - Still require expensive parallel recordings for training -> Expanded to non-parallel style transfer?
 - Although we can transfer any channel characteristics within this framework, but in practice people most commonly want clean channel characteristics only.

Thanks!