

Denoising-and-Dereverberation Hierarchical Neural Vocoder for Robust Waveform Generation

Yang Ai¹, Haoyu Li², Xin Wang², Junichi Yamagishi², Zhenhua Ling¹

¹University of Science and Technology of China, P.R.China

²National Institute of Informatics, Japan

Paper ID: 1255

SLT 2021

语音及语言信息处理国家工程实验室

Proposed method

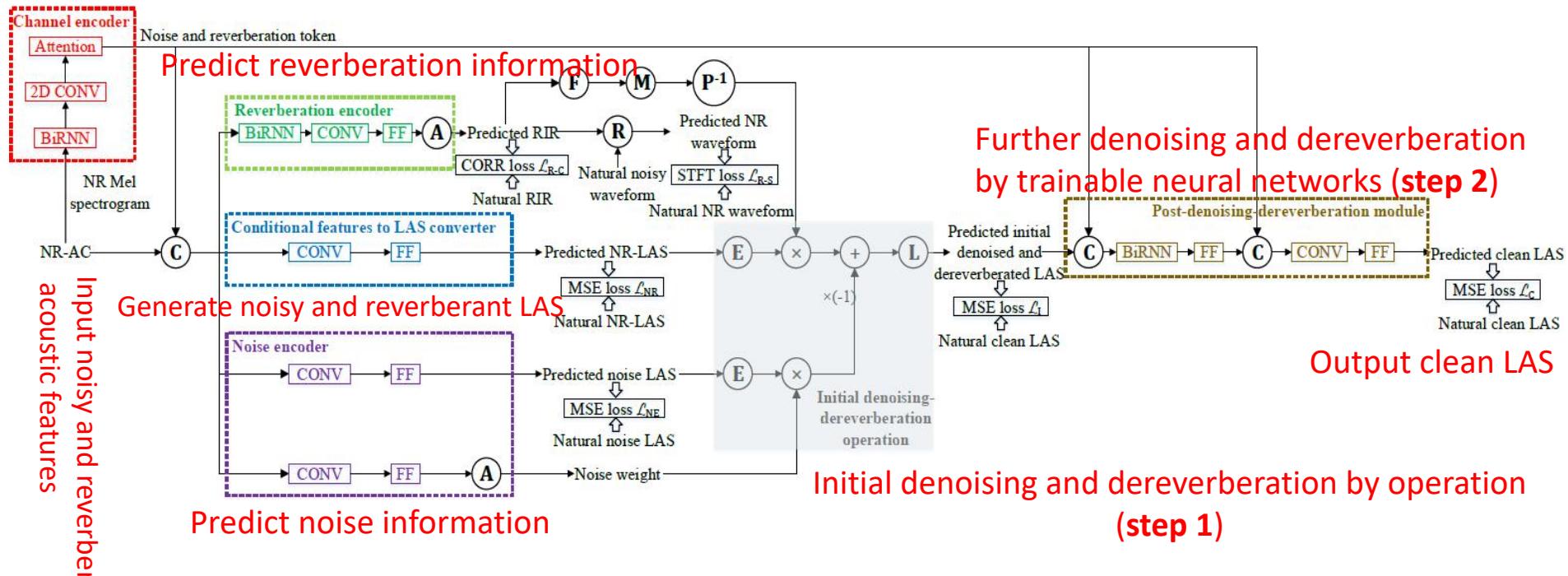
- Propose a denoising and dereverberation hierarchical neural **vocoder** (DNR-HiNet): convert noisy and reverberant acoustic features into a clean speech waveform;
 - Denoising and dereverberation amplitude spectrum predictor (DNR-ASP)
 - Phase spectrum predictor (PSP)

Overview of DNR-ASP

- Overview of DNR-ASP:

- predict clean log amplitude spectra (LAS) from input noisy and reverberant acoustic features

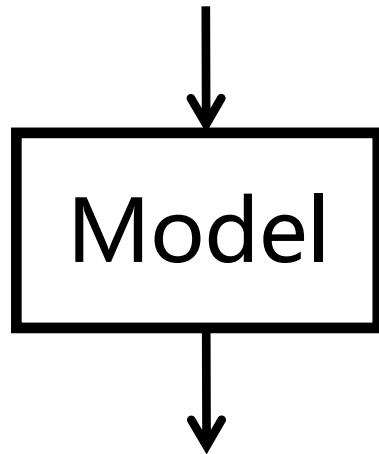
Generate noise and reverberation token



Comparsion between DNR vocoder and SE method

- The difference between denoising and dereverberation vocoder and SE methods:

Noisy and reverberant **acoustic features**

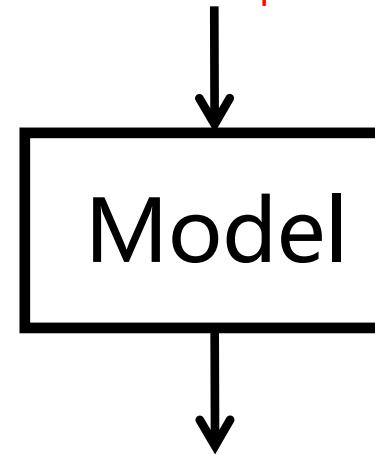


Vocoder

Difficulty

>

Noisy and reverberant speech waveform
or more detailed representations



SE

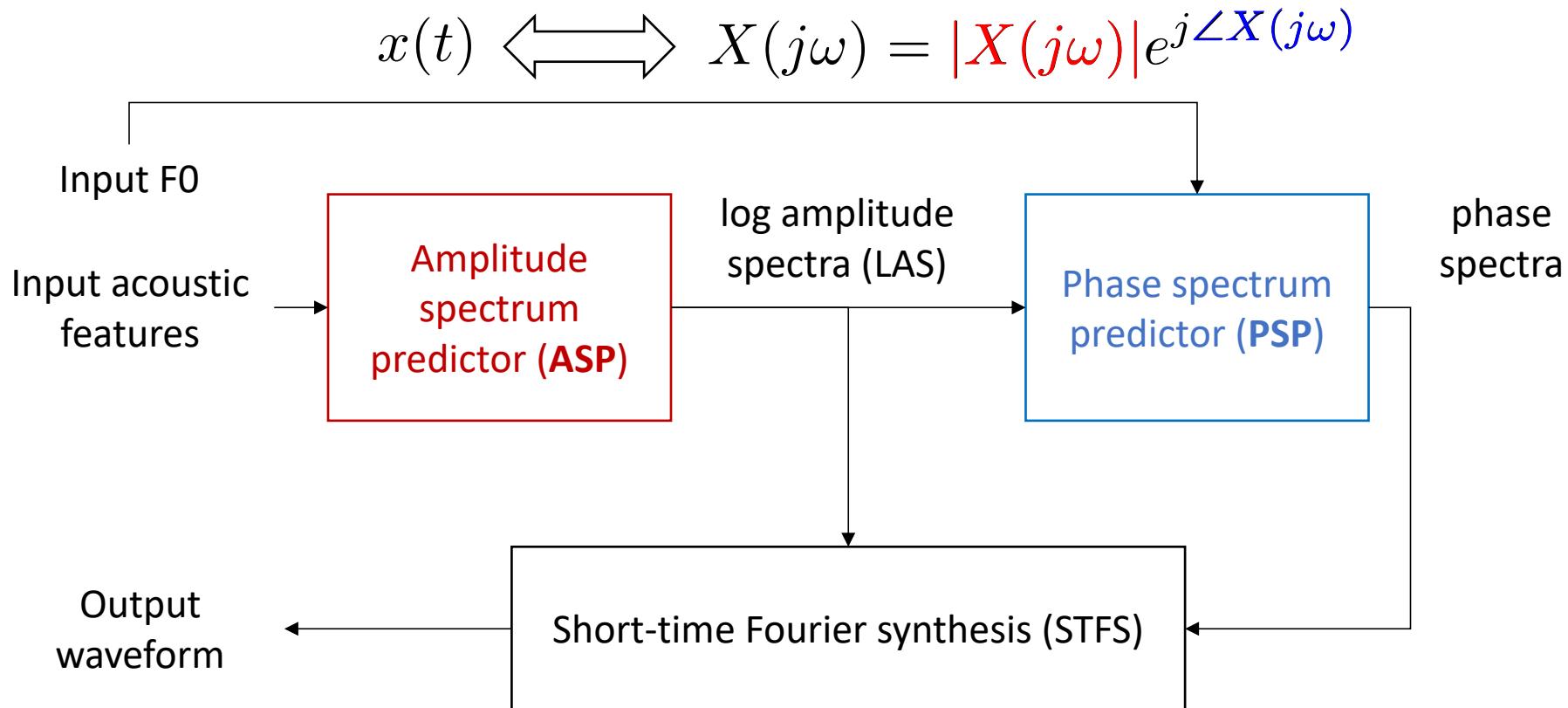
Experimental results

- The DNR-HiNet vocoder achieved better performance than the original HiNet vocoder and a few other **vocoders**
- The DNR-HiNet vocoder achieved competitive performance with several advanced speech enhancement (**SE**) methods.

Contents

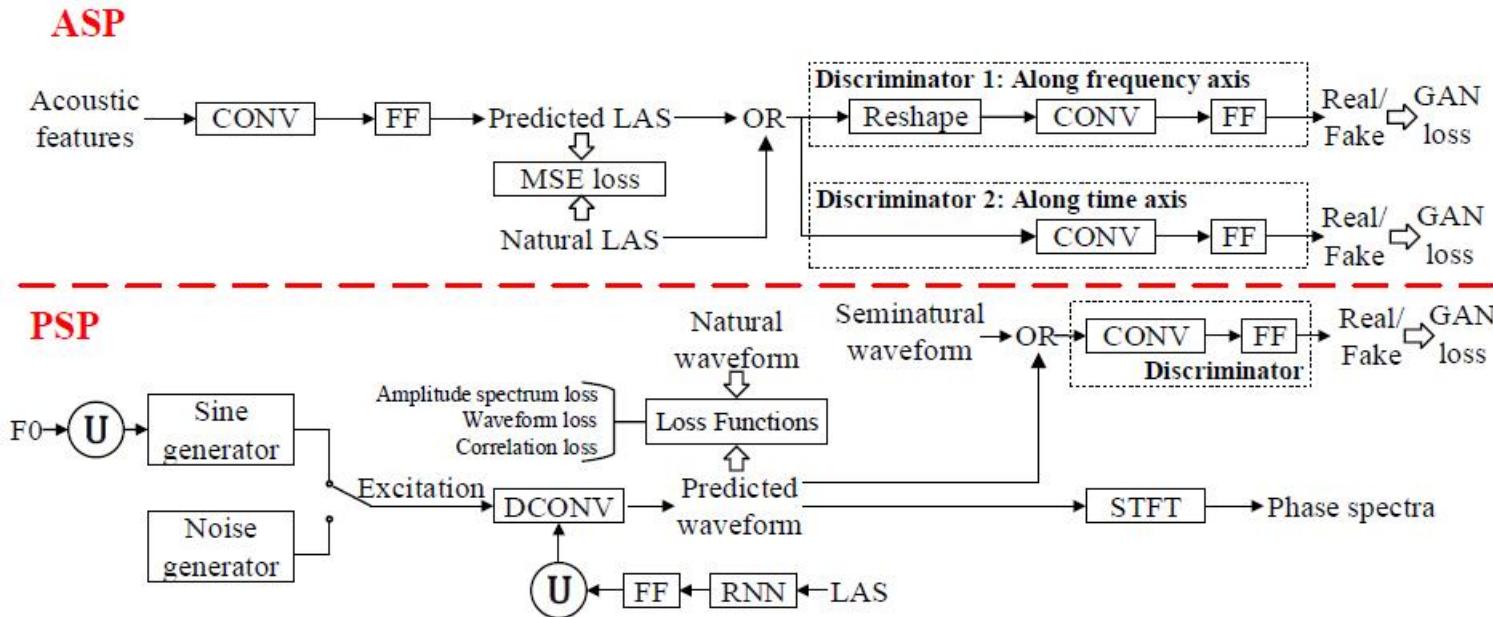
- Review of HiNet vocoder
- Theory
- Experiments
- Problems and future works
- Demos

Review of HiNet vocoder



Review of HiNet vocoder

Implement DNR-HiNet mainly by modifying the ASP in the original HiNet vocoder:
Design denoising and dereverberation ASP (DNR-ASP)

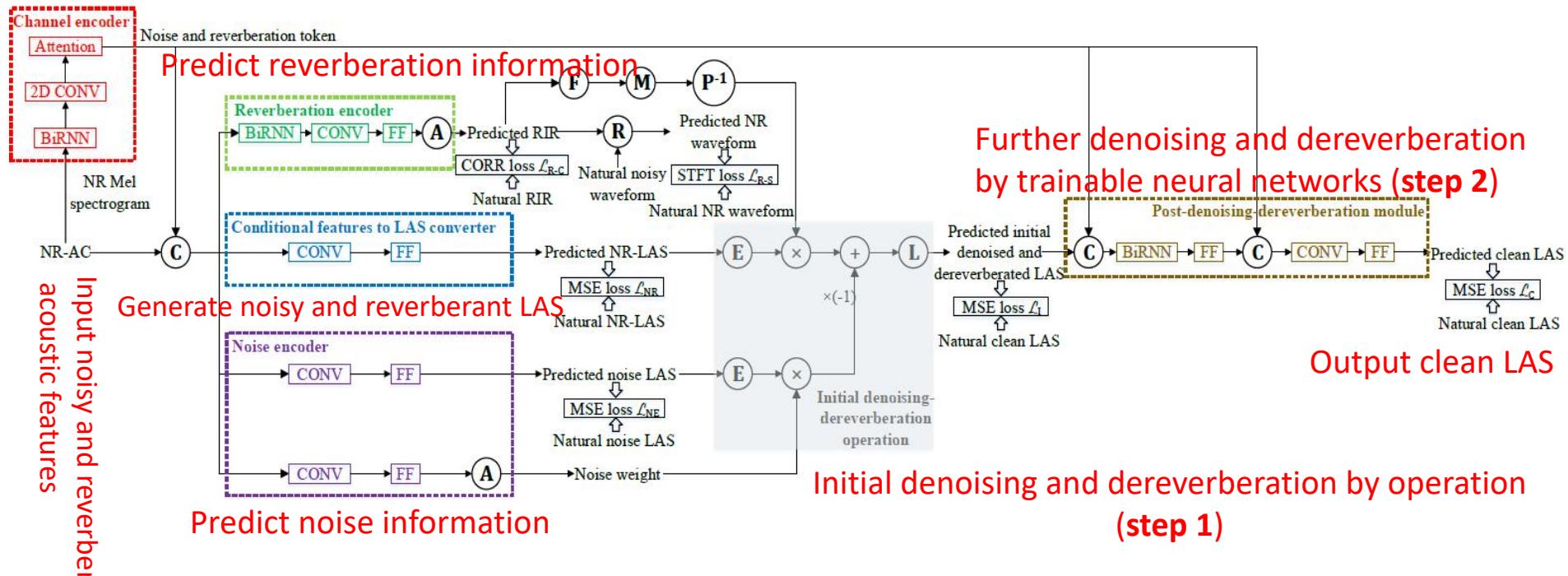


Theory

- Overview of DNR-ASP:

- predict clean log amplitude spectra (LAS) from input noisy and reverberant acoustic features

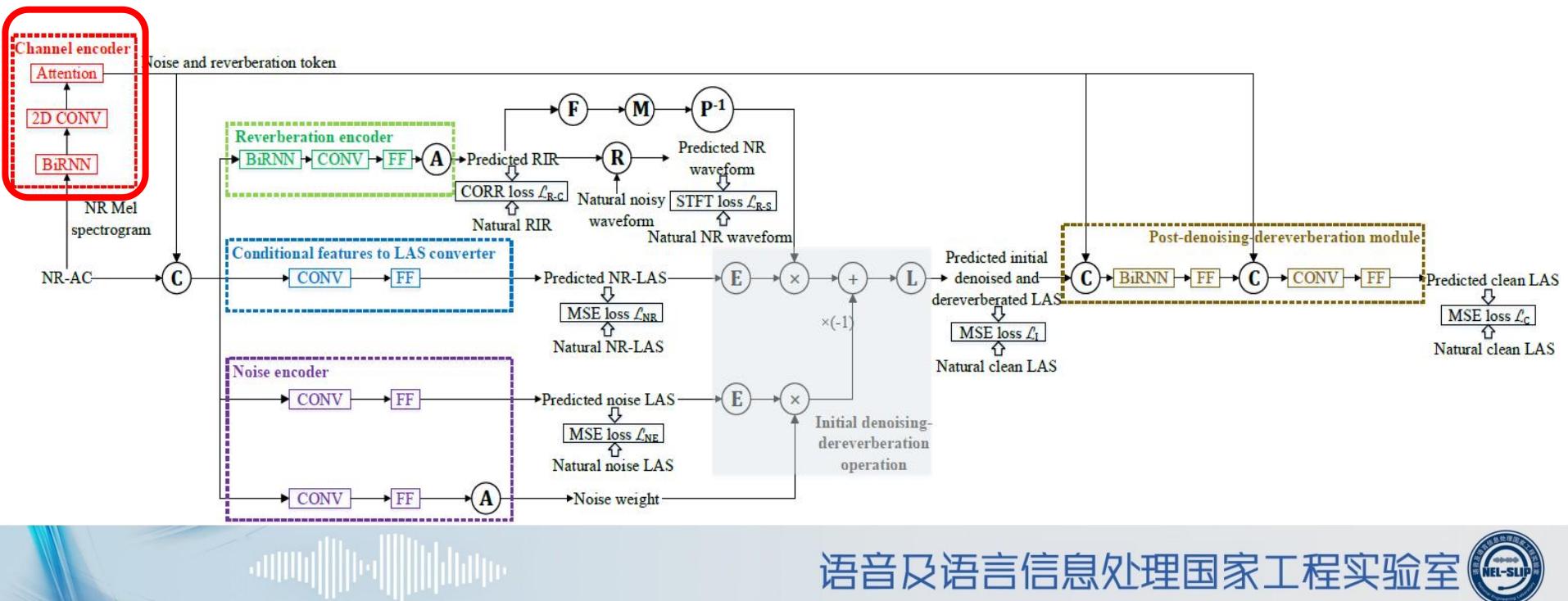
Generate noise and reverberation token



Theory

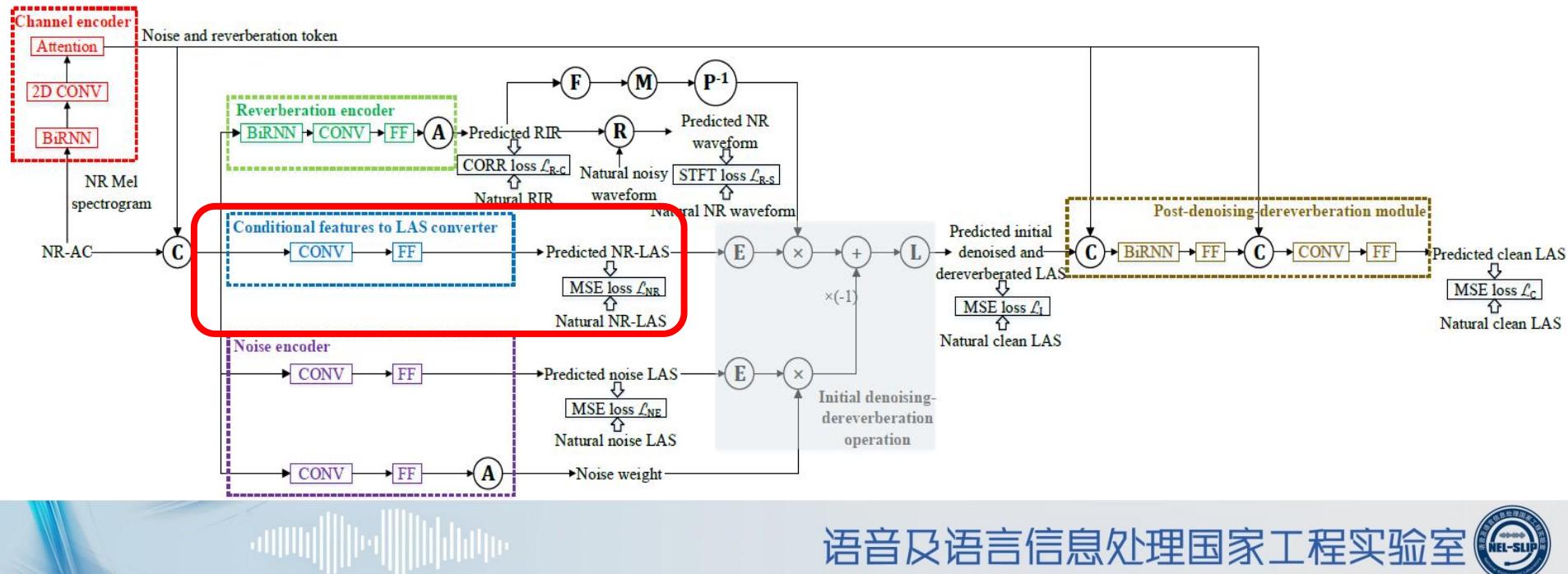
- DNR-ASP->Channel encoder:

- Aim: Distinguish different types of noise and reverberation and generalize with unseen types in the test set
- Input: Noisy and reverberant Mel spectrogram
- Output: Noise and reverberation token



Theory

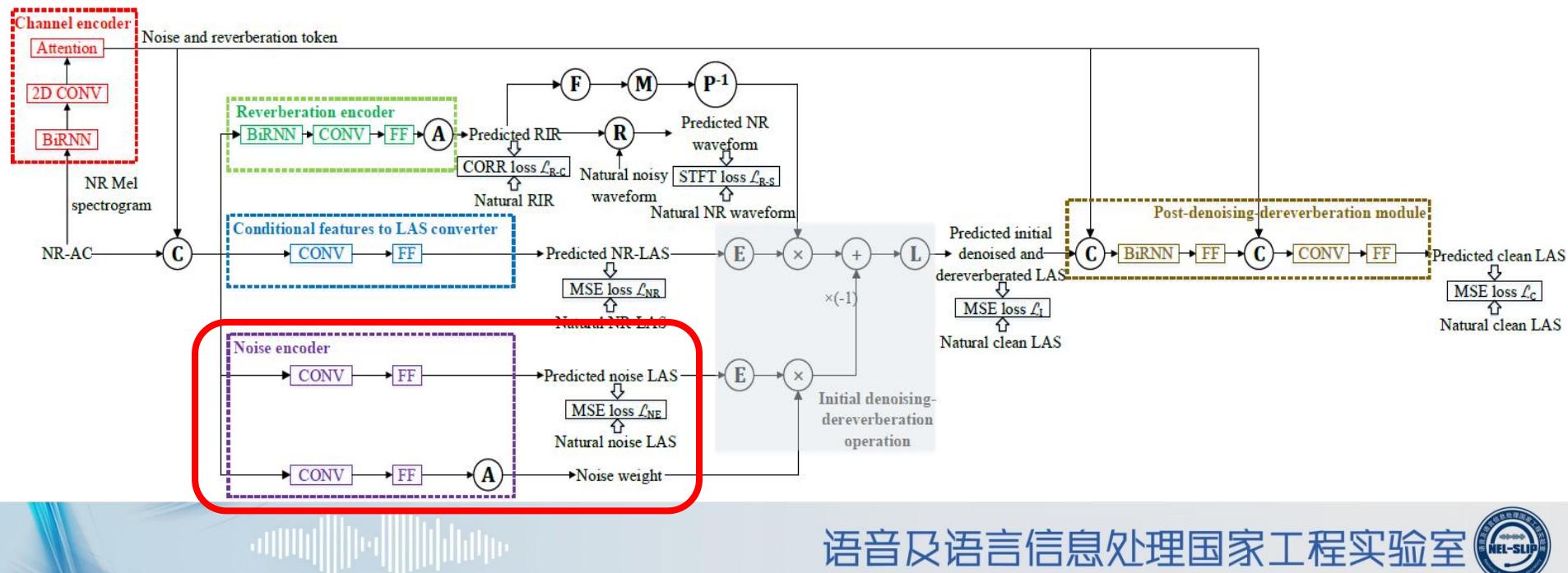
- DNR-ASP->Conditional features to LAS converter:
 - Aim: Predict noisy and reverberant LAS for initial denosing and dereverberation
 - Input: Noisy and reverberant acoustic features + token
 - Output: noisy and reverberant LAS
 - Loss function: MSE



Theory

- DNR-ASP->Noise encoder:

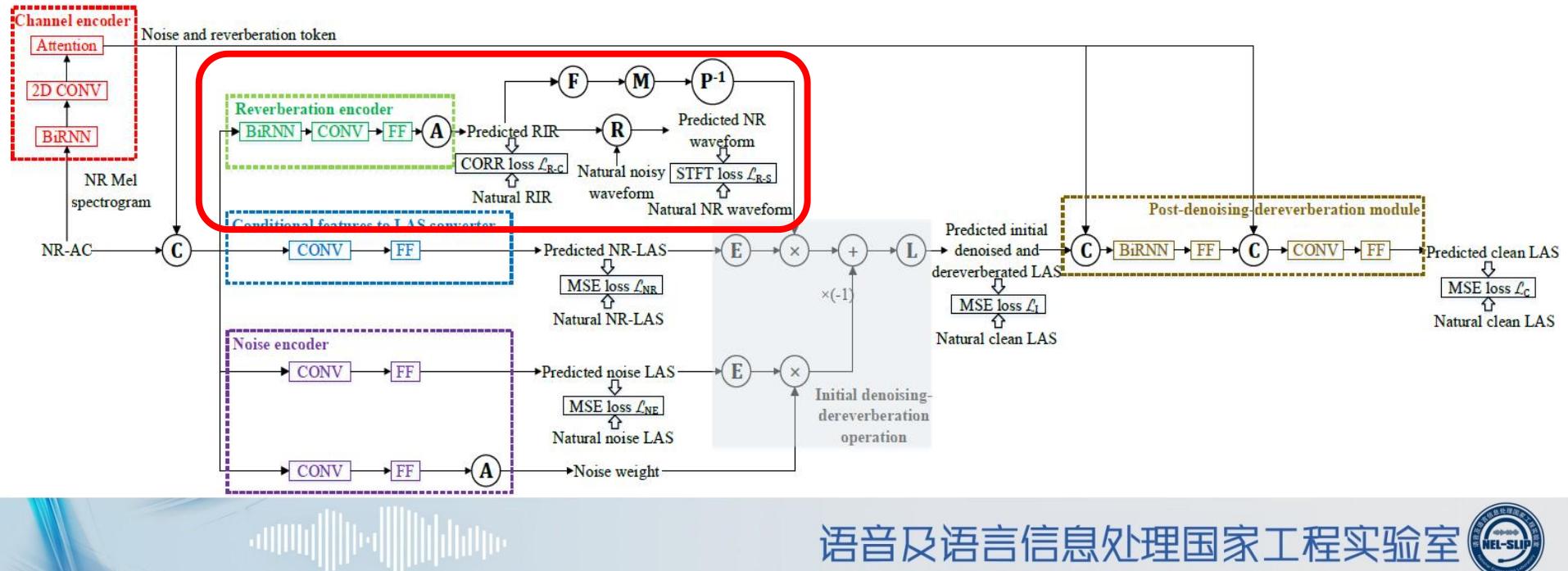
- Aim: Predict noise-related information for initial denosing and dereverberation
- Input: Noisy and reverberant acoustic features + token
- Output: noise LAS and the weight of noise amplitude spectra
- Loss function: MSE



Theory

- DNR-ASP->Reverberation encoder:

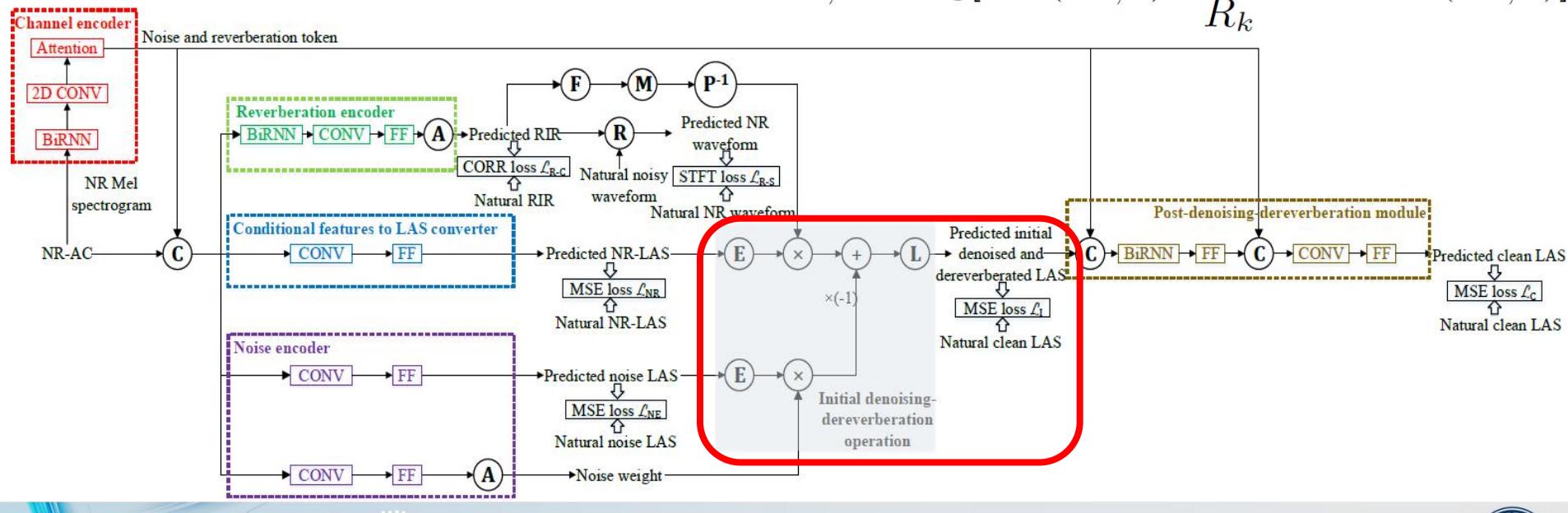
- Aim: Predict reverberation-related information for initial denosing and dereverberation
- Input: Noisy and reverberant acoustic features + token
- Output: Room impulse response (RIR)
- Loss function: CORR loss and STFT loss



Theory

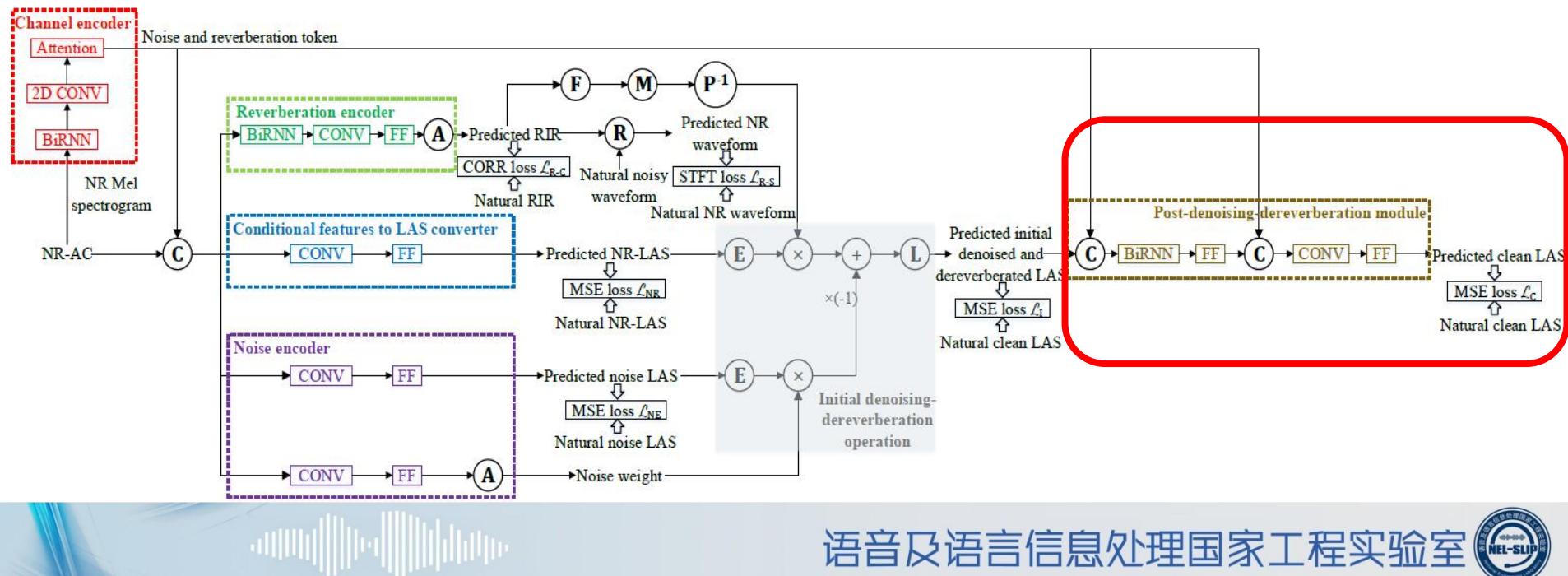
- DNR-ASP->Initial denoising-dereverberation operation:
 - Aim: Initially remove the noise and reverberation from the noisy and reverberant LAS by operation
 - Input: Noisy and reverberant LAS, noise LAS, weight of noise amplitude spectra and RIR
 - Output: Initial denoised and dereverberated LAS
 - Loss function: MSE loss

$$\tilde{L}_{n,k}^C = \log[\exp(\hat{L}_{n,k}^{NR}) \cdot \frac{1}{\hat{R}_k} - \alpha \cdot \exp(\hat{L}_{n,k}^{NE})]$$



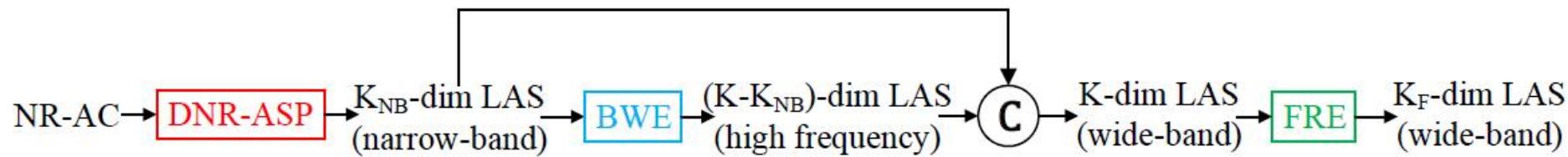
Theory

- DNR-ASP->Post-denoising-dereverberation module:
 - Aim: Further remove the noise and reverberation from the initial denoised and dereverberated LAS by trainable neural networks
 - Input: Initial denoised and dereverberated LAS
 - Output: clean LAS
 - Loss function: MSE loss



Theory

- DNR-ASP->Add two additional models:
 - Bandwidth extension (BWE) model
 - Frequency resolution extension (FRE) model



Theory

- PSP
 - Training: Using natural clean F0 and LAS as input, using natural waveform as output
 - Generation: Using natural noisy and reverberant F0 and clean LAS predicted by DNR-ASP as input

Experiments

- Data and feature configuration:
 - Training/Validation set: 28 speakers, 11012/560 utterances, 10 noise types and 4 SNRs, 5 reverberation RIR types
 - Test set: (unseen) 2 speakers, 824 utterances, 5 noise types and 4 SNRs, 3 reverberation RIR types
 - Acoustic features: 80-dim Mel spectrogram, 1-dim F0, 1-dim voiced/unvoiced flag

Experiments

- Experimental models--**Vocoders**
 - Baseline-NSF
 - Baseline-NSF': low-bound model
 - Baseline-HiNet
 - Baseline-HiNet': low-bound models
 - DNR-HiNet
 - DNR-HiNet w/ BF: add the BWE and FRE models
- Experimental models--**SE methods**
 - cIRM
 - SEGAN
 - WaveNet
 - T-GSA
 - DNR-HiNet* w/ BF: using natural noisy and reverberant phase spectra

Experiments

- Objective results
 - Comparsion among neural vocoders

Reflect:	speech intelligibility	MOS on signal distortion	MOS on noise intrusiveness	MOS on overall effect
	STOI	CSIG	CBAK	COVL
Noisy and reverberant audio	0.777	2.21	1.84	2.05
Baseline-NSF'	0.740	1.91	1.59	1.70
Baseline-NSF	0.763	2.99	1.98	2.37
Baseline-HiNet'	0.746	2.18	1.76	1.99
Baseline-HiNet	0.705	2.99	2.06	2.48
DNR-HiNet	0.769	3.25	2.24	2.69
DNR-HiNet w/ BF	0.783	3.24	2.29	2.75
cIRM	0.701	2.24	1.81	1.98
SEGAN	0.659	1.76	1.26	1.55
WaveNet	0.800	3.35	2.35	2.78
T-GSA	0.818	3.32	2.43	2.87
DNR-HiNet* w/ BF	0.803	3.38	2.44	2.92

Experiments

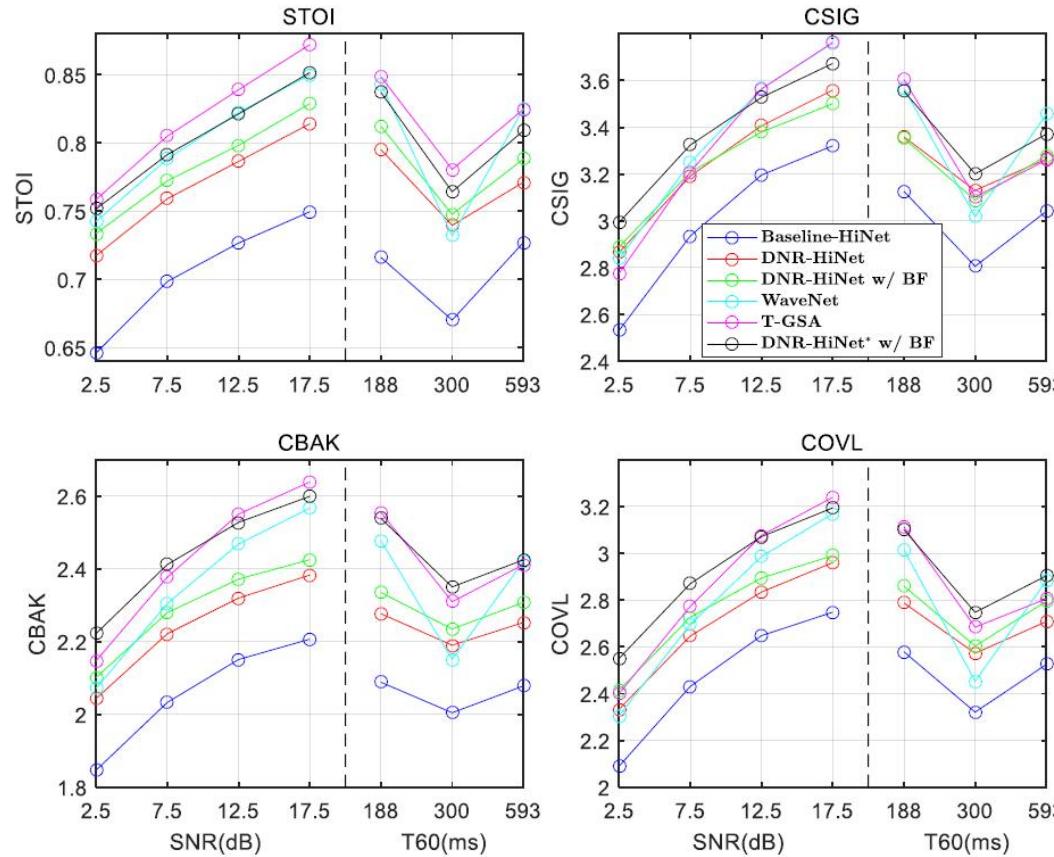
- Objective results
 - Comparsion with SE methods

Reflect:	speech intelligibility	MOS on signal distortion	MOS on noise intrusiveness	MOS on overall effect
	STOI	CSIG	CBAK	COVL
Noisy and reverberant audio	0.777	2.21	1.84	2.05
Baseline-NSF'	0.740	1.91	1.59	1.70
Baseline-NSF	0.763	2.99	1.98	2.37
Baseline-HiNet'	0.746	2.18	1.76	1.99
Baseline-HiNet	0.705	2.99	2.06	2.48
DNR-HiNet	0.769	3.25	2.24	2.69
DNR-HiNet w/ BF	0.783	3.24	2.29	2.75
cIRM	0.701	2.24	1.81	1.98
SEGAN	0.659	1.76	1.26	1.55
WaveNet	0.800	3.35	2.35	2.78
T-GSA	0.818	3.32	2.43	2.87
DNR-HiNet* w/ BF	0.803	3.38	2.44	2.92

Experiments

- Objective results

- Results of different systems under different SNR and RIR conditions of test set



Experiments

- Subjective results

- Suppression score: Higher score represents better noise and reverberation suppression
- MUSHRA score: Higher score represents better speech quality

	Systems	Suppression score	MUSHRA score
Comparsion among neural vocoders	Baseline-NSF	5.635 ± 0.131	57.30 ± 1.74
Group 1	Baseline-HiNet	5.477 ± 0.133	57.82 ± 1.60
	DNR-HiNet	5.774 ± 0.128	60.51 ± 1.60
	DNR-HiNet w/ BF	5.939 ± 0.128	61.73 ± 1.55
Comparsion with SE methods	DNR-HiNet w/ BF	5.700 ± 0.129	65.38 ± 1.48
Group 2	cIRM	4.975 ± 0.138	55.27 ± 1.88
	SEGAN	4.873 ± 0.155	49.06 ± 2.07
	WaveNet	5.396 ± 0.130	62.18 ± 1.59
	T-GSA	5.624 ± 0.121	62.28 ± 1.58
	DNR-HiNet* w/ BF	5.703 ± 0.129	65.56 ± 1.52

Problems and future works

- The DNR-ASP model is huge --> Model simplification
- The role of each module needs to be studied --> Ablation test

Demos

- <http://home.ustc.edu.cn/~ay8067/DNR/demo.html>

Thank you

语音及语言信息处理国家工程实验室

