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Proposed method |

* Propose a denoising and dereverberation hierarchical
neural vocoder (DNR-HiNet): convert noisy and
reverberant acoustic features into a clean speech
waveform;

* Denoising and dereverberation amplitude spectrum
predictor (DNR-ASP)

* Phase spectrum predictor (PSP)
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Overview of DNR-ASP

e Overview of DNR-ASP:

»predict clean log amplitude spectra (LAS) from input
noisy and reverberant acoustic features
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Comparsion between DNR vocoder and SE method

* The difference between denoising and dereverberation
vocoder and SE methods:

: . Noisy and reverberant speech waveform
Noisy and reverberant acoustic features

or more detailed representations

Difficulty
Model > Model
clean speech waveform clean speech waveform
Vocoder SE
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Experimental results '

* The DNR-HiNet vocoder achieved better performance
than the original HiNet vocoder and a few other
vocoders

* The DNR-HiNet vocoder achieved competitive
performace with several advanced speech enhancement
(SE) methods.
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* Review of HiNet vocoder

* Theory

* Experiments

* Problems and future works

* Demos
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Review of HiNet vocoder |

) <D X(jw) = | X (jw) X G)

Input FO

log amplitude phase

Amplitude spectra (LAS) spectra

Input acoustic Phase spectrum

spectrum g '
features predictor (ASP) precictor (F5P)
Output Short-time Fourier synthesis (STFS) [«
waveform
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Review of HiNet vocoder

Implement DNR-HiNet mainly by modifying the ASP in the original HiNet vocoder:
Design denoising and dereverberation ASP (DNR-ASP)

ASP
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simded Real/ (GAN

Acoustic
— — — — OR— Reshape }—t{ CONV I—P{ PF}—+
features CONY B Plemﬁﬁd Las OR. 4_.| ______________ p _____________________________________________________ E a}._e loss
MSE loss I Dbt 3= Aloie thae agte o
.. . 1sCriminator ong ime axis Real GAN
Natural LAS——— T/ *_ C ON"K|FF ________ Fahe':bloss
: Seminatural T G AN
ESP watltll a wavefomm OH CONV | FF H ?:-:}E:L loss
i ean ; Discriminator: '
= Amplitnde spectmumloss ] — » | T
generator Correlation loss 7
~~Excitation Predicted
: I » STFT |—'Phase spectra
Noise _‘i‘ waveform
generator

EEREsEEEERIRIGREE



e Overview of DNR-ASP:

»predict clean log amplitude spectra (LAS) from input
noisy and reverberant acoustic features

Generate noise and reverberation token
vl maculis

Attention

Noise and reverberation token

Predict reverberation infor
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e DNR-ASP->Channel encoder:

» Aim: Distinguish different types of noise and reverberation
and generalize with unseen types in the test set

»Input: Noisy and reverberant Mel spectrogram
»Output: Noise and reverberation token

otse and reverberation token

Reverheration encoder

1\ E Conditional features to LAS converter
NR-AC {9 o CONV —+[FF}

5
MSE loss fyg
i}
Natural NR-LAS

Noise encoder

> CONV | @—.@

»{ CONV »[ FF| »Predicted ise LAS
MSE loss £y
7

Natural noise LAS

——Noise weight

Predicted mnitial

denoised and—
dereverbated LAS

MSE loss /!
{3 Natural clean LAS
Natural clean LAS

\EEQ.LI:H:I EI/L.\R.'?EE'%IE*EJE @



e DNR-ASP->Conditional features to LAS converter:

» Aim: Predict noisy and reverberant LAS for initial denosing
and dereverberation

»Input: Noisy and reverberant acoustic features + token
»Output: noisy and reverberant LAS
» Loss function: MSE

B
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* DNR-ASP->Noise encoder:

» Aim: Predict noise-related information for initial denosing
and dereverberation

»Input: Noisy and reverberant acoustic features + token
»Output: noise LAS and the weight of noise amplitude spectra
»Loss function: MSE

B
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* DNR-ASP->Reverberation encoder:

»Aim: Predict reverberation-related information for initial
denosing and dereverberation

»Input: Noisy and reverberant acoustic features + token
»Output: Room impulse response (RIR)
» Loss function: CORR loss and STFT loss
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 DNR-ASP->Initial denoising-dereverberation operation:

»Aim: Initially remove the noise and reverberation from the
noisy and reverberant LAS by operation

»Input: Noisy and reverberant LAS, noise LAS, weigth of noise
amplitude spectra and RIR

»Output: Initial denoised and dereverberated LAS
» Loss function: MSE loss |

Efk = log[exp(ﬁfﬁf) :
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* DNR-ASP->Post-denoising-dereverberation module:

> Aim: Further remove the noise and reverberation from the
initial denoised and dereverberated LAS by trainable neural
networks

»Input: Initial denoised and dereverberated LAS
»Output: clean LAS
» Loss function: MSE loss

B
Noise and reverberation token

2D CONV
Reverheration encoder

~N

NE Mel
spectrogram \ Post-den d beration modul
1\ ! Conditional features to LAS converter Predicted initial !
NR-AC {9 » CONV »{FF | denoised and— / Predicted clean LA
J, dereverberated LA G
MSE loss £y MSE loss /£,
i [ MSE loss /|
Natural NR-LAS h Natural clean LAS

Noise encoder

» CONV

——Noise weight

Natural clean LAS \

»[ CONV + FF *Predicted noise LAS
. 155 = hllir_in] (11 ising
7S ereverberation
Natural noise LAS operation

\EEQ.LI:H:I EI/L.\R.'?EE'%IE*EJE @




 DNR-ASP->Add two additional models:
»Bandwidth extension (BWE) model
» Frequecy resolution extension (FRE) model

= Kyg-dim LAS —1 (K-Kyg)-dim LAS (E K-dim LAS Kg-dim LAS
-AC—{ DNR-ASP e — /T : : :
NE-A0 _?nan’ow—band) NS _P(hlgh frequency) (Wlde-band)_' ERE _h(w1de-band)
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* PSP

»Training: Using natural clean FO and LAS as input, using
natural waveform as output

»Generation: Using natural noisy and reverberant FO and
clean LAS predicted by DNR-ASP as input
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* Data and feature configuration:

» Training/Validation set: 28 speakers, 11012/560 utterances,
10 noise types and 4 SNRs, 5 reverberation RIR types

» Test set: (unseen) 2 speakers, 824 utterances, 5 noise types
and 4 SNRs, 3 reverberation RIR types

» Acoustic features: 80-dim Mel spectrogram, 1-dim FO, 1-dim
voiced/unvoiced flag
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* Experimental models--Vocoders
»Baseline-NSF
»Baseline-NSF': low-bound model
»Baseline-HiNet
»Baseline-HiNet': low-bound models
»DNR-HiNet
»DNR-HiNet w/ BF: add the BWE and FRE models

* Experimental models--SE methods
> CcIRM
>SEGAN
»WaveNet
> T-GSA

»DNR-HiNet* w/ BF: using natural noisy and reverberant
phase spectra
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Experiments

* Objective results

»Comparsion among neural vocoders
MOS on MOS on MOS on

REfleCt: inti?l?geii)?lity . signeﬂ ' ngise overall

distortion intrusiveness effect

STOIL CSIG CBAK COVL
Noisy and reverberant audio | 0.777 2:21 1.84 2.05
/ Baseline-NSF’ N\ | 0740 191 1.59 1.70
Baseline-NSF 0.763 2.99 1.98 2.51
Baseline-HiNet’ 0.746 2.18 1.76 1.99
Baseline-HiNet 0.705 2.99 2.06 2.48
DNR-HiNet 0.769 3.25 2.24 2.69

\ DNR-HiNet w/ BF /| 0.783 3.24 2.29 2.75
cIRM 0.701 2.24 1.81 1.98
SEGAN 0.659 1.76 1.26 1.55
WaveNet 0.800 33 2.35 278
T-GSA 0.818 3.32 2.43 2.87
DNR-HiNet™ w/ BF 0.803 3.38 2.44 2.92
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Experiments

* Objective results
» Comparsion with SE methods

MOS on MOS on MOS on

REfleCt: inti?l?geii)?lity . signeﬂ ' ngise overall

distortion intrusiveness effect

STOI CSIG CBAK COVL
Noisy and reverberant audio | 0.777 2:21 1.84 2.05
Baseline-NSF’ 0.740 1.91 1,39 1.70
Baseline-NSF 0.763 299 1.98 287
Baseline-HiNet' 0.746 2.18 1.76 1.99
Baseline-HiNet 0.705 2.99 2.06 2.48
DNR-HiNet 0.769 3.25 2.24 2.69

/" DNR-HiNet w/ BF -\ | 0.783 3.24 2.29 2.75
cIRM 0.701 2.24 1.81 1.98
SEGAN 0.659 1.76 1.26 1.55
WaveNet 0.800 335 2355 2.78
T-GSA 0.818 3.32 2.43 Z.87
\_DNR-HiNet* w/ BF J | 0.803 3.38 2.44 2.92
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Experiments

* Objective results

» Results of different systems under different SNR and RIR
conditions of test set
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* Subjective results

»Suppression score: Higher score represents better noise and
reverberation suppression

»MUSHRA score: Higher score represents better speech quality

Comparsion among

neural vocoder
Group 1

Comparsion with
SE methods

Systems Suppression score | MUSHRA score
Baseline-NSF 3635-10.131 57.30+1.74
Baseline-HiNet 5.47740.133 37.8621-1.60
DNR-HiNet 5.77440.128 60.51+1.60
DNR-HiNet w/ BF 5.939+0.128 61.73+1.55
DNR-HiNet w/ BF 5.700+0.129 65.38+1.48
cIRM 4.97540.138 55.2741.88
SEGAN 4.87340.155 49.0642.07
Group 2
WaveNet 5.39640.130 62.181+1.59
T-GSA 5.62440.121 62.2841.58
DNR-HiNet* w/ BF 5.70340.129 65.56+1.52

.
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Problems and future works

* The DNR-ASP model is huge --> Model simplification

* The role of each module needs to be studied -->
Ablation test
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Demos -

* http://home.ustc.edu.cn/~ay8067/DNR/demo.html
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Thank you
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