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Background

End-to-end TTS is a method of converting text to speech directly in single model.

Yelssues

1) Alignments predicted from
soft-attention tend to be unstable.

Y Solutions

1) Construct monotonic alignments
from phoneme duration.

Errors from soft-attention.



Our approach: simplification of duration based TTS

Method Teacher- Training Aligner . Aligner Duration Latept
Student  phases is external form duration
FastSpeech v 3 Soft-attention v continuous
DurlAn 3 HMM? v continuous
FastSpeech2 3 HMM-GMM v continuous
AlignTTS 4 SSNT-like MDN v discrete
JDI-T v 1 Soft-attention + CTC continuous
Glow-TTS 1 MAS continuous
Non-Attentive Tacotron 2 HMM v continuous ?
VQ-VAE 1 CTC discrete v

e All modules are jointly trainable
o Single training phase

e Discrete duration
o  Conform with forced aligner and upsampling
o No length reguralizer or ceiling of duration

e Duration is modeled as latent variables
o  Simple training criterion based on VAE



Alignment methods in TTS frameworks
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e Pipeline TTS

o

Consists of multiple models to
convert texts into speech.

Each model is dedicated to a single
function.

Duration model forms alignments
between source texts and target
speech.

e ENd-to-end TTS

o

Consists of a single model to convert
texts into speech

Attention mechanism forms
alignments between source texts
and target speech.



Design of a latent alignments based on duration

Soft-attention Hard-attention
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e Using phoneme duration as a latent variable

Proposed model
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e Let the phoneme duration length be a discrete variable (the number of frames of acoustic features)




Modeling latent duration with variational autoencoder

(VAE)
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Introduce phoneme
duration as discrete latent
variables ( (‘J) ( ) )
Sample phoneme 3‘duration
from forced aligner

Define approximate
posterior with samples of
phoneme duration

Use duration predictor as
prior for VAE

Use duration recognizer as
VAE'’s encoder

Use TTS decoder as VAE's
decoder



Objective function of conditional VQ-VAE
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Duration samples from forced aligner
(approximate posterior)
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TTS can be model with
the conditional probability
(x: speech, y: texts).

The marginal probability
can be approximated with
ELBO.

Modules in TTS can be
incorporated to VQ-VAE:

o

(@]

o

Prior: duration predictor
VQ: duration recognizer
Approximate posterior:
duration samples
Decoder: TTS decoder
Sampler: forced aligner



An architecture of the proposed method (1)
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Common behaviors

a.

Upsample linguistic features
based on phoneme duration



An architecture of the proposed method (2)
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An architecture of the proposed method (3)
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An architecture of the proposed method (4)
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An architecture of the proposed method (5)
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e Training phase

c.  Duration recognizer predicts
distributions by encoding linguistic
and acoustic features. Duration
codebook is optimized by
minimizing KLD between the
distribution and codebook.
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An architecture of the proposed method (6)
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Training phase

d. Duration predictor predicts
distribution about duration from
linguistic features. Minimizing
KLD between the distribution and
the approximate posterior
optimizes the duration predictor.
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An architecture of the proposed method (7)
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Experiment

e Corpus: LJSpeech (English, 1 female speaker, 24h)

e Proposed systems
o CP (Character inputs for TTS, phoneme inputs for forced aligner)
o PP (Phoneme inputs)
o CC (Character inputs)

e Baselines:

o Transformer TTS

o Tacotron2 (v2, v3) > Major end-to-end TTS methods

o FastSpeech A major TTS method using duration model
o ABS
o Natural

e FEvaluation

o Listening test about naturalness (5-grade MOS)
o 200 listeners
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Experimental results

e Naturalness:
o Natural speech

o >End-to-end TTS
m Transformer
m Tacotron v3, v2
4l -
. o > Proposed systems
m CP PP, CC
o > TTS using duration
‘ model
m FastSpeech
e Proposed systems
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Pros & Cons of the proposed method

PI'OS Method Teacher- Training Aligrier . Aligner Duration Latept
Student ~ phases is external form duration
O Slngle training FastSpeech v 3 Soft-attention v continuous
DurlAn 3 HMM? v continuous
phase- FastSpeech?2 3 HMM-GMM v continuous
; i AlignTTS 4 SSNT-like MDN v discrete
O
Sl_rnp_le trammg JDI-T v 1 Soft-attention + CTC continuous
criterion. Glow-TTS 1 MAS continuous
Non-Attentive Tacotron 2 HMM v continuous ?
| VQ-VAE 1 GIC discrete v
Cons
o Sensitive to design of linguistic feature labels
m Absence of pauses
m  Symbols which is not straightforwardly related to duration
o  Duration sampled from forced aligner (CTC) is not good enough.

CTC assumes conditional independence across time steps.

It may not be suitable for segmentation.
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