

End-to-End Text-to-Speech using Latent Duration based on VQ-VAE

Yusuke Yasuda, Xin Wang, Junichi Yamagishi

National institute of informatics, Japan

The graduate university for advanced studies, SOKENDAI, Japan

ICASSP 2021

Background

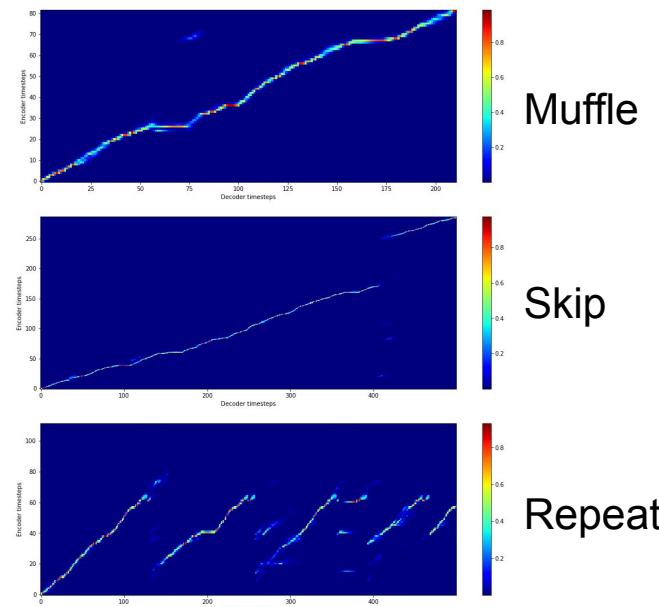
End-to-end TTS is a method of converting text to speech directly in single model.

☆Issues

- 1) Alignments predicted from soft-attention tend to be unstable.

☆Solutions

- 1) Construct monotonic alignments from phoneme duration.



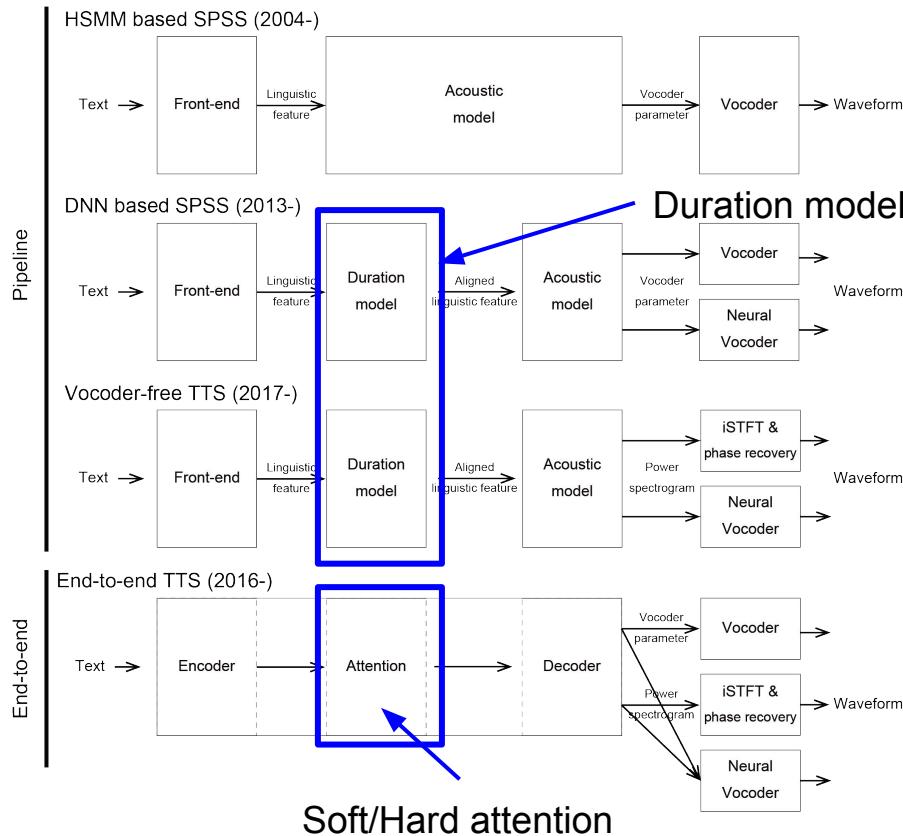
Errors from soft-attention.

Our approach: simplification of duration based TTS

Method	Teacher-Student	Training phases	Aligner	Aligner is external	Duration form	Latent duration
FastSpeech	✓	3	Soft-attention	✓	continuous	
DurlAn		3	HMM?	✓	continuous	
FastSpeech2		3	HMM-GMM	✓	continuous	
AlignTTS		4	SSNT-like MDN	✓	discrete	
JDI-T	✓	1	Soft-attention + CTC		continuous	
Glow-TTS		1	MAS		continuous	
Non-Attentive Tacotron		2	HMM	✓	continuous	?
VQ-VAE		1	CTC		discrete	✓

- All modules are jointly trainable
 - Single training phase
- Discrete duration
 - Conform with forced aligner and upsampling
 - No length regularizer or ceiling of duration
- Duration is modeled as latent variables
 - Simple training criterion based on VAE

Alignment methods in TTS frameworks



● Pipeline TTS

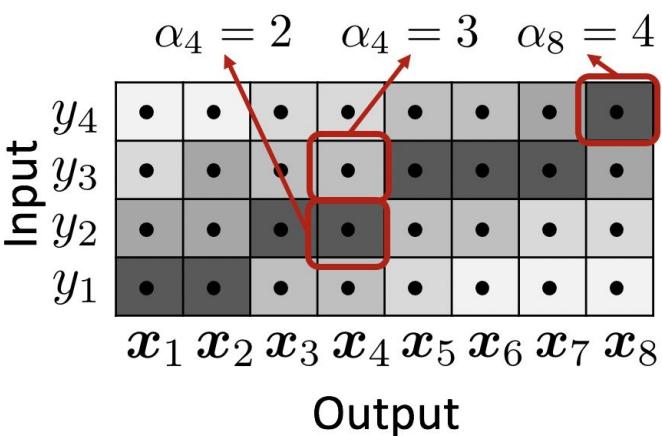
- Consists of multiple models to convert texts into speech.
- Each model is dedicated to a single function.
- Duration model forms alignments between source texts and target speech.

● End-to-end TTS

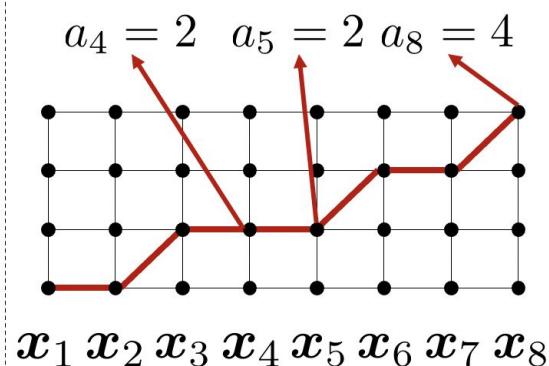
- Consists of a single model to convert texts into speech
- Attention mechanism forms alignments between source texts and target speech.

Design of a latent alignments based on duration

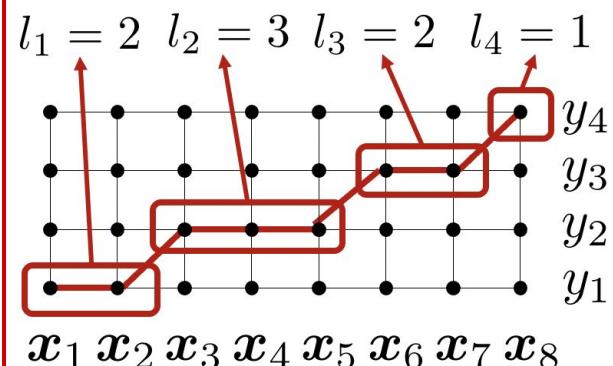
Soft-attention



Hard-attention

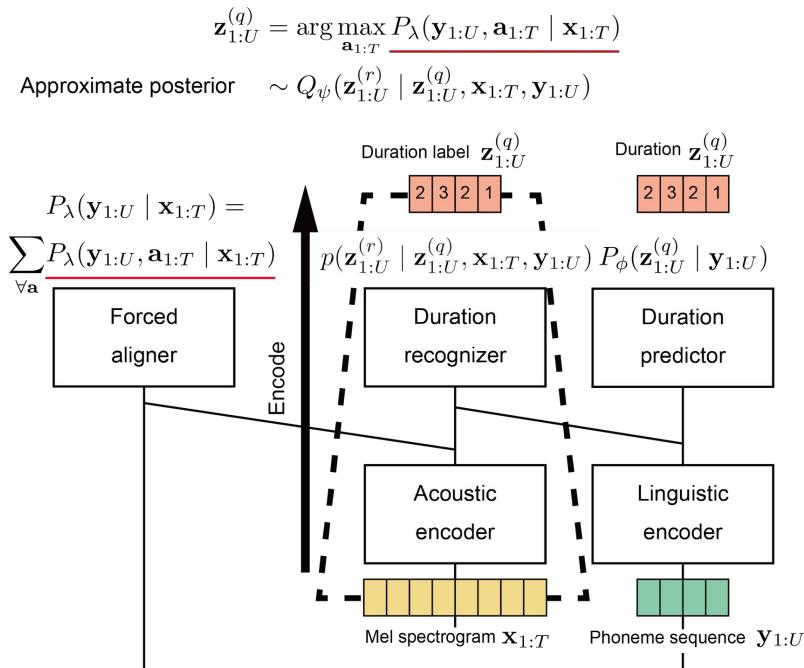


Proposed model



- Using phoneme duration as a latent variable
- Let the phoneme duration length be a discrete variable (the number of frames of acoustic features)

Modeling latent duration with variational autoencoder (VAE)



- Introduce phoneme duration as discrete latent variables ($\mathbf{z}_{1:U}^{(q)}, \mathbf{z}_{1:U}^{(r)}$)
- Sample phoneme duration from forced aligner
- Define approximate posterior with samples of phoneme duration
- Use duration predictor as prior for VAE
- Use duration recognizer as VAE's encoder
- Use TTS decoder as VAE's decoder

Objective function of conditional VQ-VAE

$$\log p(\mathbf{x}_{1:T} \mid \mathbf{y}_{1:U}) \quad \text{TTS as a probabilistic model}$$

$$= \log \sum_{\forall \mathbf{z}_{1:U}^{(q)}} \int_{\mathbf{z}_{1:U}^{(r)}} p(\mathbf{x}_{1:T}, \mathbf{z}_{1:U}^{(q)}, \mathbf{z}_{1:U}^{(r)} \mid \mathbf{y}_{1:U}) d\mathbf{z}_{1:U}^{(r)} \quad (7.1)$$

$$\geq \mathbb{E}_{Q_\lambda(\mathbf{z}_{1:U}^{(q)})} \underbrace{[\log p_\theta(\mathbf{x}_{1:T} \mid \mathbf{z}_{1:U}^{(q)}, \mathbf{y}_{1:U})]}_{\text{Decoder}} \quad \text{TTS decoder} \quad (7.2)$$

$$- \text{KL}[Q_\lambda(\mathbf{z}_{1:U}^{(q)} \mid \mathbf{x}_{1:T}, \mathbf{y}_{1:U}) \parallel \underbrace{P_\phi(\mathbf{z}_{1:U}^{(q)} \mid \mathbf{y}_{1:U})}_{\text{Prior}}] \quad \text{Duration predictor (prior)} \quad (7.3)$$

$$- \mathbb{E}_{Q_\lambda(\mathbf{z}_{1:U}^{(q)})} \left\{ \text{KL}[Q_\psi(\mathbf{z}_{1:U}^{(r)} \mid \mathbf{z}_{1:U}^{(q)}, \mathbf{x}_{1:T}, \mathbf{y}_{1:U}) \parallel \underbrace{p(\mathbf{z}_{1:U}^{(r)} \mid \mathbf{z}_{1:U}^{(q)})}_{\text{Duration recognizer (vector quantization)}}] \right\}. \quad (7.4)$$

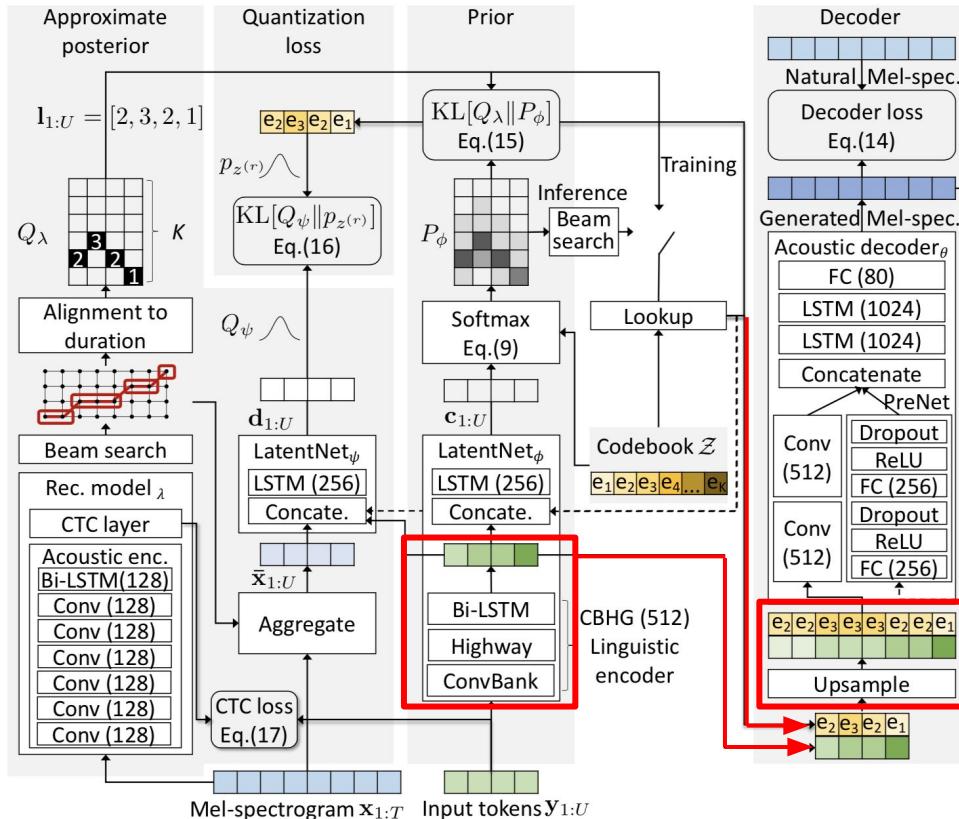
$$+ \gamma \log \sum_{\forall \mathbf{a}_{1:T}} P_\lambda(\mathbf{y}_{1:U}, \mathbf{a}_{1:T} \mid \mathbf{x}_{1:T}), \quad (7.17)$$

Forced aligner

Duration samples from forced aligner
(approximate posterior)

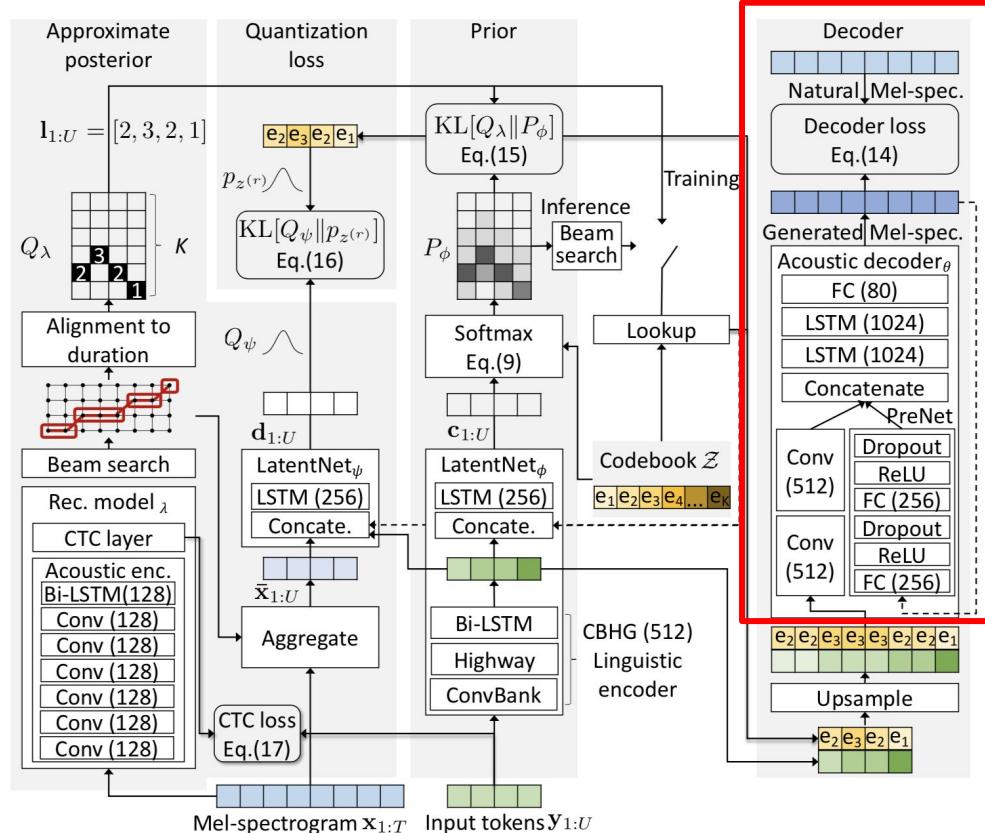
- TTS can be model with the conditional probability (x: speech, y: texts).
- The marginal probability can be approximated with ELBO.
- Modules in TTS can be incorporated to VQ-VAE:
 - Prior: duration predictor
 - VQ: duration recognizer
 - Approximate posterior: duration samples
 - Decoder: TTS decoder
 - Sampler: forced aligner

An architecture of the proposed method (1)



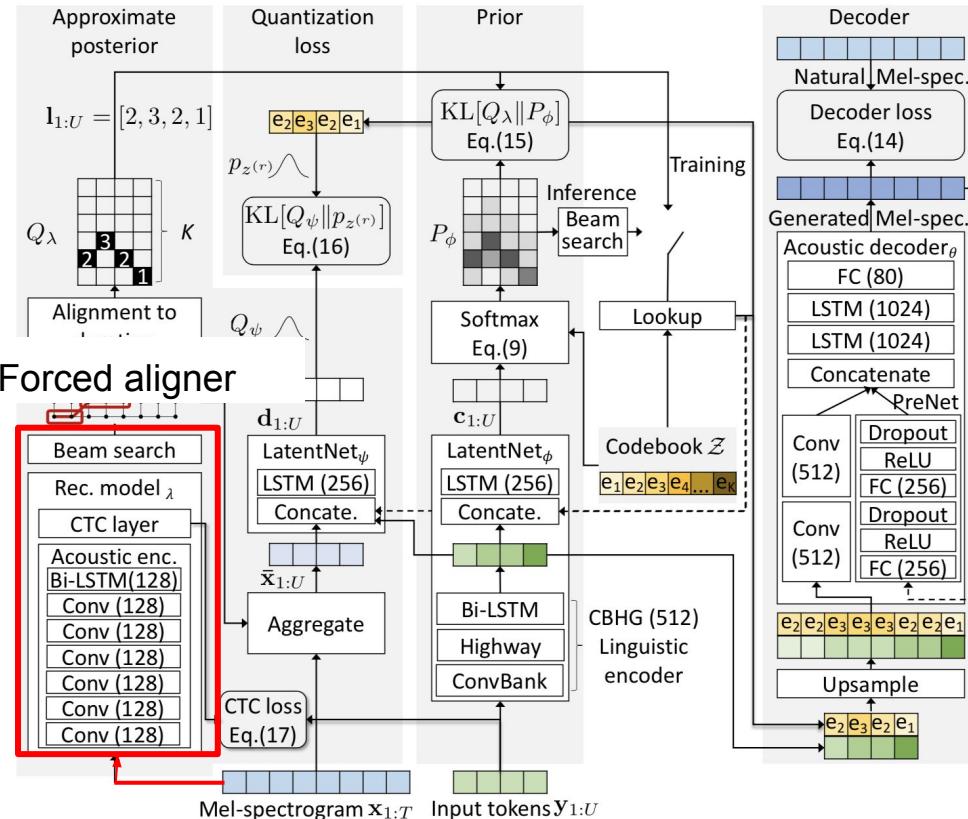
- Common behaviors
 - a. Upsample linguistic features based on phoneme duration
 - b. Decoder decodes the upsampled linguistic features into acoustic features.

An architecture of the proposed method (2)



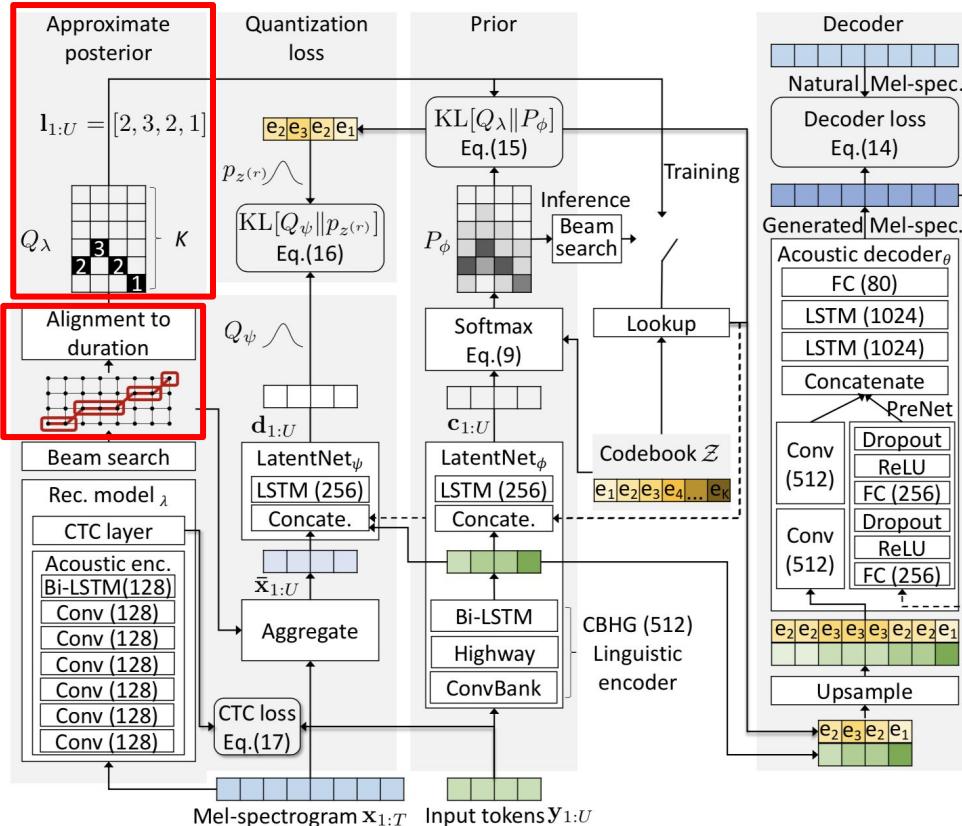
- Common behaviors
 - Upsample linguistic features based on phoneme duration
 - Decoder decodes the upsampled linguistic features into acoustic features.

An architecture of the proposed method (3)



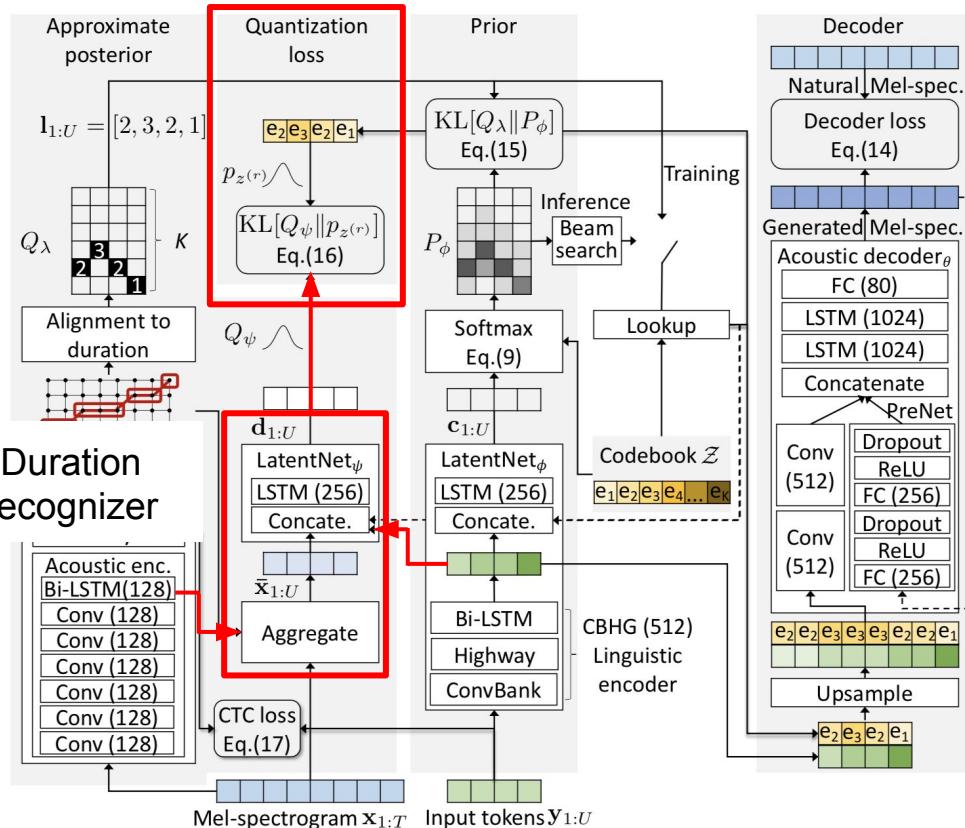
- **Training phase**
 - Sample alignments from forced aligner.
 - Convert alignments into phoneme duration. The duration samples defines approximate posterior.
 - Duration recognizer predicts distributions by encoding linguistic and acoustic features. Duration codebook is optimized by minimizing KLD between the distribution and codebook.
 - The samples are used to train duration recognizer and predictor.
 - Duration predictor predicts distribution about duration from linguistic features. Minimizing KLD between the distribution and the approximate posterior optimizes the duration predictor.

An architecture of the proposed method (4)



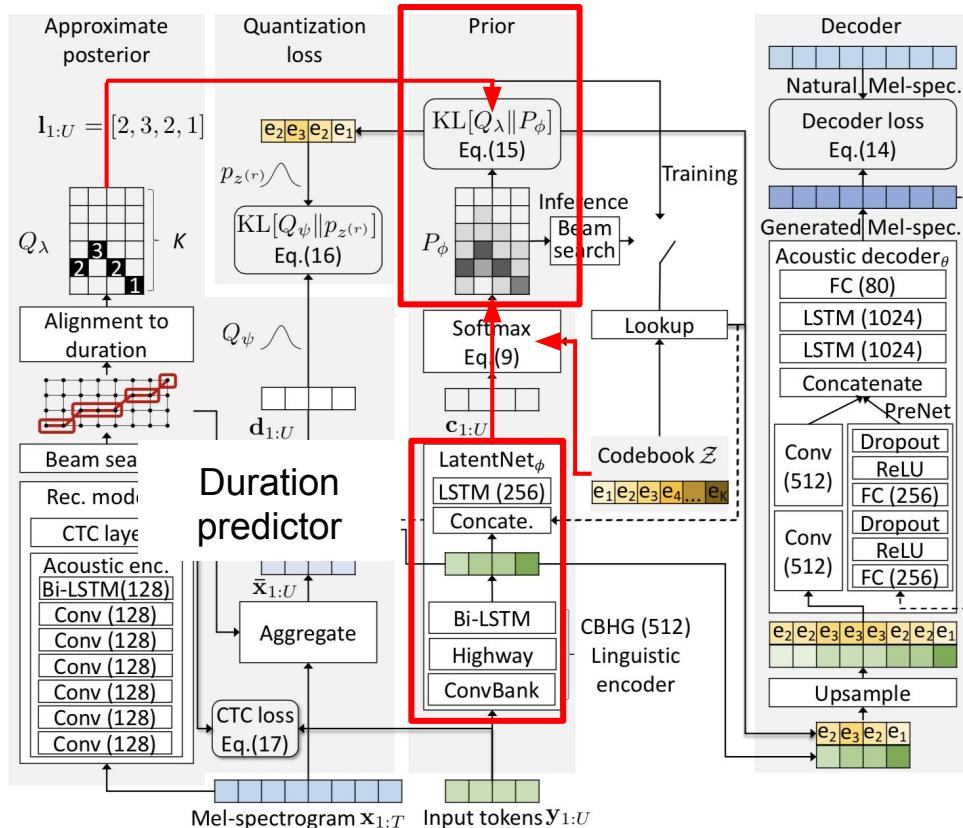
- **Training phase**
 - Sample alignments from forced aligner.
 - Convert alignments into phoneme duration. The duration samples defines approximate posterior.
 - Duration recognizer predicts distributions by encoding linguistic and acoustic features. Duration codebook is optimized by minimizing KLD between the distribution and codebook.
 - The samples are used to train duration recognizer and predictor.
 - Duration predictor predicts distribution about duration from linguistic features. Minimizing KLD between the distribution and the approximate posterior optimizes the duration predictor.

An architecture of the proposed method (5)



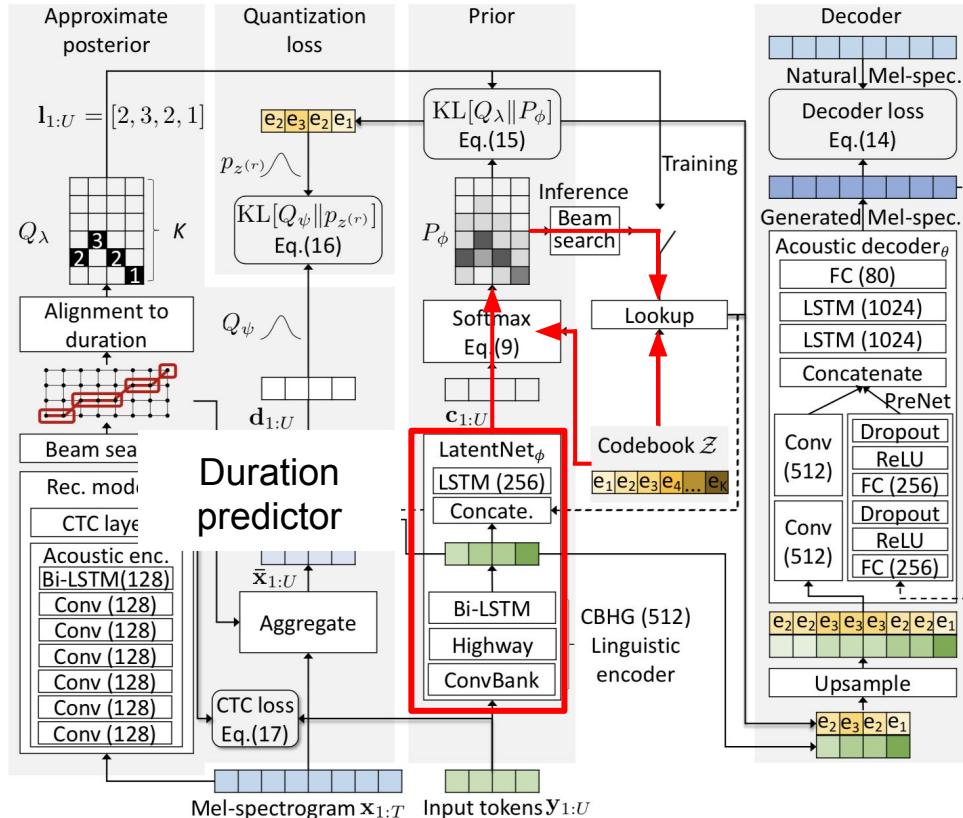
- **Training phase**
 - Sample alignments from forced aligner.
 - Convert alignments into phoneme duration. The duration samples defines approximate posterior.
 - Duration recognizer predicts distributions by encoding linguistic and acoustic features. Duration codebook is optimized by minimizing KLD between the distribution and codebook.
 - The samples are used to train duration recognizer and predictor.
 - Duration predictor predicts distribution about duration from linguistic features. Minimizing KLD between the distribution and the approximate posterior optimizes the duration predictor.

An architecture of the proposed method (6)



- **Training phase**
 - Sample alignments from forced aligner.
 - Convert alignments into phoneme duration. The duration samples defines approximate posterior.
 - Duration recognizer predicts distributions by encoding linguistic and acoustic features. Duration codebook is optimized by minimizing KLD between the distribution and codebook.
 - Duration predictor predicts distribution about duration from linguistic features. Minimizing KLD between the distribution and the approximate posterior optimizes the duration predictor.

An architecture of the proposed method (7)



- **Prediction phase**
 - Sample phoneme duration from duration predictor with beam search.

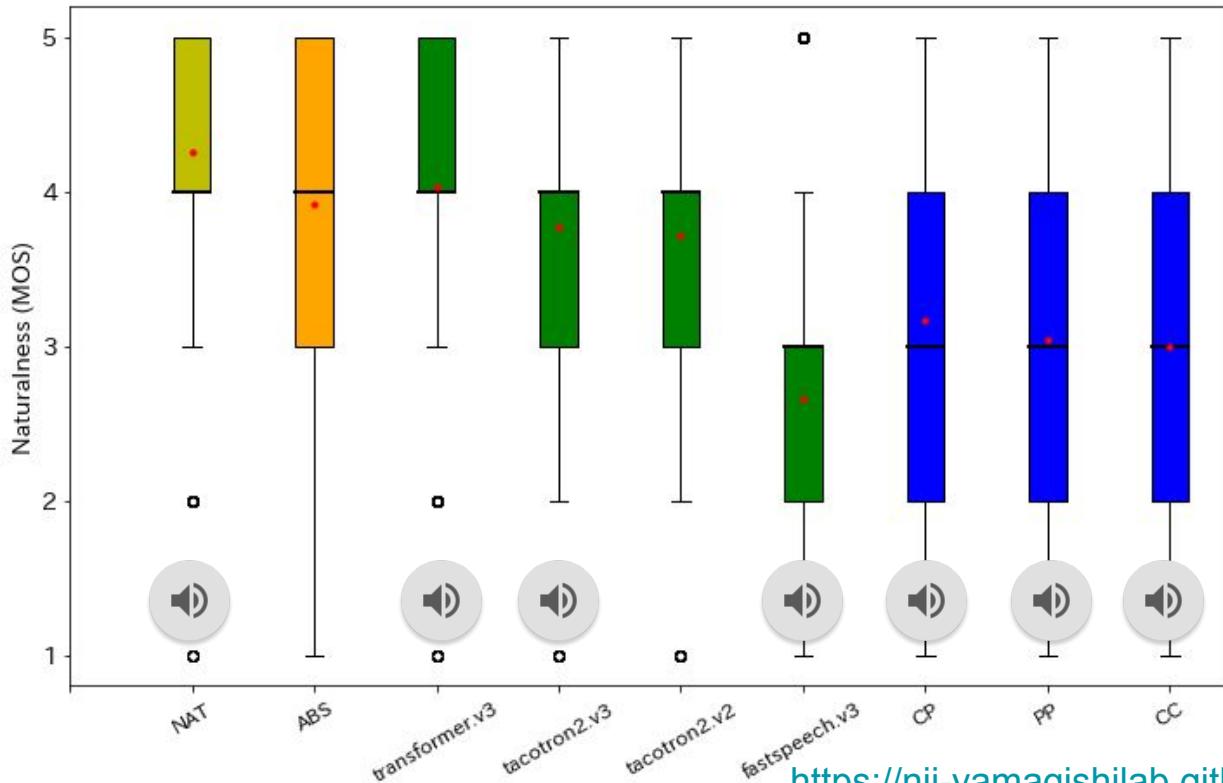
Experiment

- Corpus: LJSpeech (English, 1 female speaker, 24h)
- Proposed systems
 - CP (Character inputs for TTS, phoneme inputs for forced aligner)
 - PP (Phoneme inputs)
 - CC (Character inputs)
- Baselines:
 - Transformer TTS
 - Tacotron2 (v2, v3)
 - FastSpeech
 - ABS
 - Natural

Major end-to-end TTS methods

A major TTS method using duration model
- Evaluation
 - Listening test about naturalness (5-grade MOS)
 - 200 listeners

Experimental results



- **Naturalness:**
 - Natural speech
 - > End-to-end TTS
 - Transformer
 - Tacotron v3, v2
 - > Proposed systems
 - CP, PP, CC
 - > TTS using duration model
 - FastSpeech
- **Proposed systems**
 - CP (character for TTS, phoneme for CTC) was the best

Pros & Cons of the proposed method

- Pros

- Single training phase.
- Simple training criterion.

Method	Teacher-Student	Training phases	Aligner	Aligner is external	Duration form	Latent duration
FastSpeech	✓	3	Soft-attention	✓	continuous	
DurlAn		3	HMM?	✓	continuous	
FastSpeech2		3	HMM-GMM	✓	continuous	
AlignTTS		4	SSNT-like MDN	✓	discrete	
JDI-T	✓	1	Soft-attention + CTC		continuous	
Glow-TTS		1	MAS		continuous	
Non-Attentive Tacotron		2	HMM	✓	continuous	?
VQ-VAE		1	CTC		discrete	✓

- Cons

- Sensitive to design of linguistic feature labels
 - Absence of pauses
 - Symbols which is not straightforwardly related to duration
- Duration sampled from forced aligner (CTC) is not good enough.
 - CTC assumes conditional independence across time steps.
 - It may not be suitable for segmentation.