

# How do Voices from Past Speech Synthesis Challenges Compare Today?

Erica Cooper, Junichi Yamagishi

August 28, 2021

National Institute of Informatics, Japan

PLATINUM SPONSOR











#### **Table of contents**

- 1. Introduction
- 2. Listening Test
- 3. Results
- 4. Analysis of Natural Speech
- 5. Discussion and Future Work

### Introduction

#### **Project**

- A very large-scale listening test combining samples from many past Blizzard Challenges and Voice Conversion Challenges
  - MOS results from separate past listening tests cannot be meaningfully combined and compared because the set of systems and therefore the context of the test are completely different.
  - Conducting a new test with these samples combined will enable more direct comparisons.
  - The data gathered can be used to train MOS prediction models.

#### Motivation

- How reliable and reproducible are MOS scores?
- How do past listening test results compare to ratings gathered in the present day?
- Will the results correlate even when the listening test context has changed?
- What observations can we make about speech synthesis and voice conversion systems over the years?
- What are the effects of the **speaker** of the dataset on synthesized speech quality?
- Collect a very large-scale database of a variety of synthesizer outputs and their MOS ratings for the purpose of training MOSnet-like systems for automatic MOS prediction

## **Listening Test**

#### Large-scale listening test

- 187 different systems from past BC, VCC, and ESPnet TTS
  - BC 2008, 2009, 2010, 2011, 2013, 2016 (English **EH1** tasks only)
  - VCC 2016, 2018, 2020 (same-language task only)
  - ESPnet TTS: samples from ICASSP 2020 trained on LJSpeech

#### • 38 utterances per system

- Samples are balanced over genre where relevant
- Samples are balanced over source and target speakers for VCC
- Only genres included in the original naturalness tests are included

#### • Test design

- One sample from each system per set
- One listener rates one set containing 187 samples
- Coverage of 8 Japanese listeners per set; 304 total listeners
- MOS rating for naturalness on a scale of 1-5
- Significant differences: Mann-Whitney U test (p<0.05) with Bonferroni correction

### **Results**

#### Listening test results



#### Listening test results

#### Best systems

- ESPnet-transformerv3
- BC2010-M
- ESPnet-transformerv1
- ESPnet-tacotron2v3
- ESPnet-nvidia

#### Worst systems

- VCC2018-N06
- VCC2018-N16
- VCC2020-T14
- VCC2016-C
- VCC2016-baseline

#### Listening test results

#### Best systems

- ESPnet-transformerv3
- BC2010-M
- ESPnet-transformerv1
- ESPnet-tacotron2v3
- ESPnet-nvidia

#### Worst systems

- VCC2018-N06
- VCC2018-N16
- VCC2020-T14
- VCC2016-C
- VCC2016-baseline

VCC typically has a smaller amount of data

#### Listening test: Agreement

Agreement = 0.5 (Krippendorff's Alpha and Intra-Class Correlation)





Merlin has the largest variation in scores

| Challenge | PCC  | System-le<br>SRCC | vel<br>RMSE | U<br>PCC | tterance-I<br>SRCC | evel<br>RMSE |
|-----------|------|-------------------|-------------|----------|--------------------|--------------|
| BC2008    | 0.93 | 0.89              | 0.33        | 0.70     | 0.67               | 0.62         |
| BC2009    | 0.97 | 0.95              | 0.48        | 0.76     | 0.72               | 0.64         |
| BC2010    | 0.93 | 0.98              | 0.66        | 0.74     | 0.73               | 0.85         |
| BC2011    | 0.91 | 0.90              | 0.76        | 0.76     | 0.67               | 0.87         |
| BC2013    | 0.97 | 0.98              | 0.49        | -        | -                  | -            |
| BC2016    | 0.97 | 0.93              | 0.40        | -        | -                  | -            |
| VCC2016   | 0.97 | 0.92              | 0.42        | 0.56     | 0.53               | 1.12         |
| VCC2018   | 0.96 | 0.91              | 0.77        | 0.55     | 0.53               | 1.10         |
| VCC2020   | 0.98 | 0.96              | 0.23        | 0.87     | 0.87               | 0.48         |
| ESPnet    | 0.99 | 0.98              | 0.09        | 0.73     | 0.61               | 0.59         |

|           | System-level |      |      | U    | tterance-l | evel |
|-----------|--------------|------|------|------|------------|------|
| Challenge | PCC          | SRCC | RMSE | PCC  | SRCC       | RMSE |
| BC2008    | 0.93         | 0.89 | 0.33 | 0.70 | 0.67       | 0.62 |
| BC2009    | 0.97         | 0.95 | 0.48 | 0.76 | 0.72       | 0.64 |
| BC2010    | 0.93         | 0.98 | 0.66 | 0.74 | 0.73       | 0.85 |
| BC2011    | 0.91         | 0.90 | 0.76 | 0.76 | 0.67       | 0.87 |
| BC2013    | 0.97         | 0.98 | 0.49 | -    | -          | -    |
| BC2016    | 0.97         | 0.93 | 0.40 | -    | -          | -    |
| VCC2016   | 0.97         | 0.92 | 0.42 | 0.56 | 0.53       | 1.12 |
| VCC2018   | 0.96         | 0.91 | 0.77 | 0.55 | 0.53       | 1.10 |
| VCC2020   | 0.98         | 0.96 | 0.23 | 0.87 | 0.87       | 0.48 |
| ESPnet    | 0.99         | 0.98 | 0.09 | 0.73 | 0.61       | 0.59 |

|           | System-level |      |      | U    | tterance-l | evel |
|-----------|--------------|------|------|------|------------|------|
| Challenge | PCC          | SRCC | RMSE | PCC  | SRCC       | RMSE |
| BC2008    | 0.93         | 0.89 | 0.33 | 0.70 | 0.67       | 0.62 |
| BC2009    | 0.97         | 0.95 | 0.48 | 0.76 | 0.72       | 0.64 |
| BC2010    | 0.93         | 0.98 | 0.66 | 0.74 | 0.73       | 0.85 |
| BC2011    | 0.91         | 0.90 | 0.76 | 0.76 | 0.67       | 0.87 |
| BC2013    | 0.97         | 0.98 | 0.49 | -    | -          | -    |
| BC2016    | 0.97         | 0.93 | 0.40 | -    | -          | -    |
| VCC2016   | 0.97         | 0.92 | 0.42 | 0.56 | 0.53       | 1.12 |
| VCC2018   | 0.96         | 0.91 | 0.77 | 0.55 | 0.53       | 1.10 |
| VCC2020   | 0.98         | 0.96 | 0.23 | 0.87 | 0.87       | 0.48 |
| ESPnet    | 0.99         | 0.98 | 0.09 | 0.73 | 0.61       | 0.59 |

|           | System-level |      |      | U    | tterance-l | evel |
|-----------|--------------|------|------|------|------------|------|
| Challenge | PCC          | SRCC | RMSE | PCC  | SRCC       | RMSE |
| BC2008    | 0.93         | 0.89 | 0.33 | 0.70 | 0.67       | 0.62 |
| BC2009    | 0.97         | 0.95 | 0.48 | 0.76 | 0.72       | 0.64 |
| BC2010    | 0.93         | 0.98 | 0.66 | 0.74 | 0.73       | 0.85 |
| BC2011    | 0.91         | 0.90 | 0.76 | 0.76 | 0.67       | 0.87 |
| BC2013    | 0.97         | 0.98 | 0.49 | -    | -          | -    |
| BC2016    | 0.97         | 0.93 | 0.40 | -    | -          | -    |
| VCC2016   | 0.97         | 0.92 | 0.42 | 0.56 | 0.53       | 1.12 |
| VCC2018   | 0.96         | 0.91 | 0.77 | 0.55 | 0.53       | 1.10 |
| VCC2020   | 0.98         | 0.96 | 0.23 | 0.87 | 0.87       | 0.48 |
| ESPnet    | 0.99         | 0.98 | 0.09 | 0.73 | 0.61       | 0.59 |

#### Do MOS scores improve year by year?

Best system in each challenge compared to the previous challenge's best system

| Year : Best system     | MOS  | Improved?    | Significant? |
|------------------------|------|--------------|--------------|
| BC2008 : J             | 3.63 |              |              |
| BC2009 : S             | 3.87 | $\checkmark$ | ×            |
| BC2010 : M             | 4.27 | $\checkmark$ | $\checkmark$ |
| BC2011 : G             | 4.12 | ×            | ×            |
| BC2013 : M             | 4.01 | ×            | ×            |
| BC2016 : L             | 3.63 | X            | ✓            |
| VCC2016 : O            | 2.86 |              |              |
| VCC2018: N10           | 3.55 | $\checkmark$ | $\checkmark$ |
| VCC2020 : T10          | 3.88 | $\checkmark$ | ×            |
| ESPnet : transformerv3 | 4.33 |              |              |

#### Do MOS scores improve year by year?

Best system in each challenge compared to the previous challenge's best system

| Year : Best system     | MOS  | Improved?    | Significant? |
|------------------------|------|--------------|--------------|
| BC2008 : J             | 3.63 |              |              |
| BC2009 : S             | 3.87 | $\checkmark$ | ×            |
| BC2010 : M             | 4.27 | $\checkmark$ | $\checkmark$ |
| BC2011 : G             | 4.12 | ×            | ×            |
| BC2013 : M             | 4.01 | ×            | ×            |
| BC2016 : L             | 3.63 | X            | ✓            |
| VCC2016 : O            | 2.86 |              |              |
| VCC2018: N10           | 3.55 | $\checkmark$ | $\checkmark$ |
| VCC2020 : T10          | 3.88 | $\checkmark$ | ×            |
| ESPnet : transformerv3 | 4.33 |              |              |

#### At what point did TTS quality reach that of natural speech?

Is the year's best system significantly different from that year's natural speech?

| Year : Best system     | Significant difference from natural speech? |
|------------------------|---------------------------------------------|
| BC2008 : J             | ✓                                           |
| BC2009 : S             | ✓                                           |
| BC2010 : M             | X                                           |
| BC2011 : G             | ✓                                           |
| BC2013 : M             | X                                           |
| BC2016 : L             | ×                                           |
| VCC2016 : O            | ✓                                           |
| VCC2018: N10           | X                                           |
| VCC2020 : T10          | X                                           |
| ESPnet : transformerv3 | ×                                           |

#### At what point did TTS quality reach that of natural speech?

Difference of each system from natural speech, computed from averaged z-score-normalized ratings by listener for each challenge



#### Correlation with objective measures

- SNR: r=0.17
- P.563: r=0.05
- MOSnet trained on ASVspoof: r=0.03

#### Correlation with objective measures

- SNR: r=0.17
- P.563: r=0.05
- MOSnet trained on ASVspoof: r=0.03

Room for improvement of objective measures

# Analysis of Natural Speech

#### Natural speech preferences and effects of corpus on TTS

- The effect of speech corpus on perceived TTS quality is well-documented:
  - J. Williams, J. Rownicka, P. Oplustil, and S. King, "Comparison of speech representations for automatic quality estimation in multi-speaker text-to- speech synthesis," 2020
  - F. Hinterleitner, C. Manolaina, and S. Moller, "Influence of a voice on the quality of synthesized speech," 2014
- Since every challenge uses a different corpus, this is a confounding factor to making meaningful direct comparisons across challenges, but it is still important to capture preferences regarding these factors for training a MOS prediction model.

#### Natural speech metadata and genre

- **Professional speakers** were rated as significantly more natural than non-professional speakers
- Female speakers had a marginally-significantly (p=0.05) higher MOS than male speakers
- No significant differences between British and American speakers
- Genres: news, book, conversational
  - News rated as most natural (MOS=4.36)
  - Conversational: MOS=4.14
  - Book: MOS=4.09 (significantly lower)

#### **Speaker characteristics**

- Standard Praat features:
  - Minimum, maximum, mean, and standard deviation of f0 and energy
  - NHR, jitter, shimmer
- Moderate negative correlations with MOS for shimmer (r=-0.46), NHR (r=-0.41), and mean energy (r=-0.37)
- Moderate **positive** correlations with MOS for **standard deviation of energy** (r=0.41)

#### Effect of corpus on benchmark systems



- Moderate correlations for Festival
  - Pearson r=0.33
  - Spearman r=0.54
- Strong correlations for HTS
  - Pearson r=0.87
  - $\bullet \ \ Spearman \ r{=}0.90$

#### Effect of corpus on benchmark systems



- Moderate correlations for Festival
  - Pearson r=0.33
  - Spearman r=0.54
- Strong correlations for HTS
  - Pearson r=0.87
  - Spearman r=0.90

HTS output quality more closely matches the quality of the training data.

**Discussion and Future Work** 

#### Discussion and future work

- We have a large dataset for training MOSnet-type systems
- Strong correlations with past listening tests
- Choice of speaker for training data is very important
- Will repeating the test with English listeners reveal language-dependent or cultural factors?
- Some systems have clear agreements whereas others have a wider distribution of scores.
  - What makes certain systems so "controversial"?
  - Are certain types of artifacts or unnaturalness more salient to some listeners than to others?
  - Analysis of listener differences
  - Incorporate variance of scores into MOSnet

