
OpenForensics: Large-Scale Challenging Dataset 
For Multi-Face Forgery Detection And Segmentation In-The-Wild
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• Address new tasks of massive face forgery in-the-wild
• Present new image dataset to promote tasks of multi-face forgery 

detection and segmentation
• Provide benchmark suite for tasks of multi-face forgery detection 

and segmentation
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• Our GAN-based generation framework can synthesize infinite 
human identities for multi-face swapping

• Generated faces:

Distribution of realistic score

Human performance in face forgery 
recognition

Human performance in multi-face 
forgery detection

Correlation between visual property 
and  human performance

v OpenForensics can trick human yield the highest justification error 
and lowest accuracy.

v More fake faces cause more missed detection

v Deep learning leading algorithms cannot yet effectively solve real-world 
challenges (Top-1: AP <60)

v Multi-face forgery detection and segmentation in-the-wild is still far from 
been solved, leaving large room for improvement
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Train 44,122 151,364

Val 7,308 15,352

Test-Dev 18,895 49,750

Test-Challenge 45,000 117,670

Total 115,325 334,136

• Multi-task annotation:

• Test-Challenge set with data augmentation:

It is extremely difficult to 
point out forged faces among 
many faces in natural scenes.
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• 200 participants (80 experts and 120 non-experts)
• 3,000 images (5 datasets) was used in experiments

https://sites.google.com/view/ltnghia/research/openforensics

