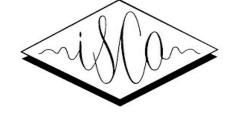


Automatic speaker verification spoofing and deepfake detection using wav2vec 2.0 and data augmentation

Hemlata Tak¹, Massimiliano Todisco¹, Xin Wang², Jee-weon Jung³ Junichi Yamagishi² and Nicholas Evans¹

¹EURECOM, France, ²National Institute of Informatics, Japan, ³Naver Corporation, South Korea



lune 29, 2022

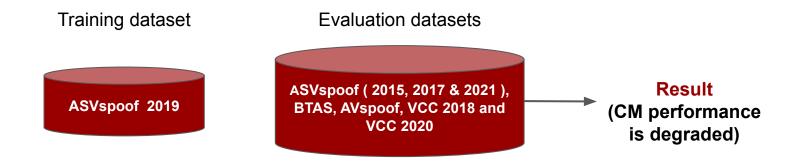
Contents

- Motivation
- Proposed framework
- Experimental setup
- Results
- Conclusions

Motivation

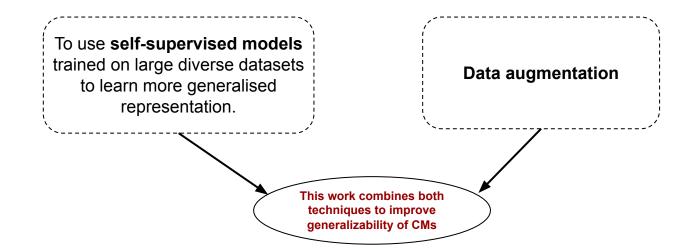
Challenges:

- Lack of generalisation and domain mismatch between training and testing data [1,2].
- Lack of sufficiently representative training data.

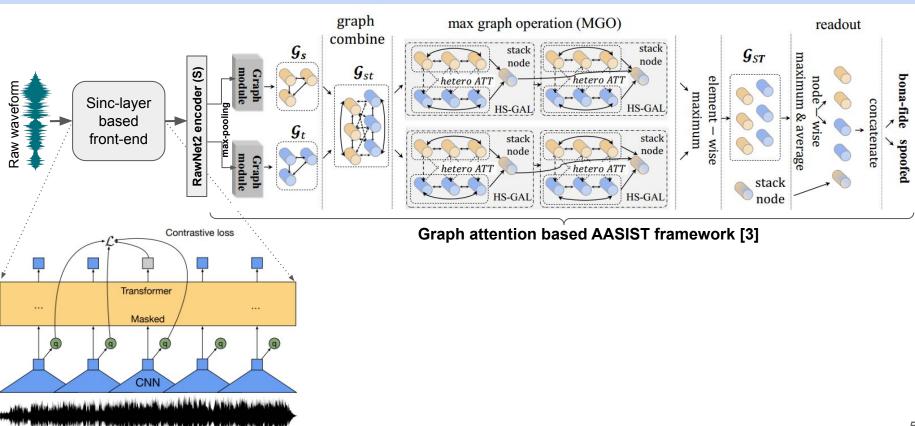


Key idea

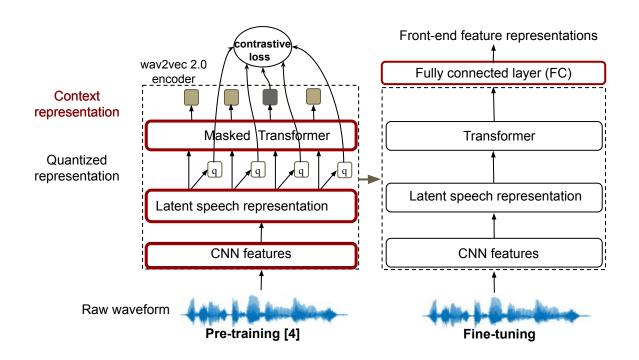
- Use larger and diverse representative training database.
 - Advantage: better generalisation
 - O Disadvantage: It's impractical never enough



Proposed framework



Wav2vec 2.0 (XLSR) Model



Fine-tuning: Add a simple linear layer on top of the transformer layer and jointly optimize using weighted cross entropy loss with a lower learning rate.

Experimental setup

Datasets:

- ASVspoof 2019 (training set) [6] for fine-tuning
- ASVspoof 2021 (evaluation set) [7]
 - Logical access (LA)
 - Speech Deepfake detection (DF)

Metrics: Min t-DCF [8] & Equal Error Rate

Baseline: An integrated spectro-temporal graph attention network (**AASIST**) [3].

RawBoost Data augmentation [9] applied on-the-fly to existing training database.

^[3] J. Jung, H. Heo, H. Tak et al., "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks," in Proc. ICASSP, 2022.

^[6] X. Wang, J. Yamagishi et al., "ASVspoof 2019: a large-scale public database of synthesized, converted and replayed speech", in CSL, 2020.

^[7] J. Yamagishi , X. Wang et al., "ASVspoof 2021: accelerating progress in spoofed and deepfake speech detection", in ASVspoof 2021 workshop, 2021.

^[8] T. Kinnunen, H. Delgado et al., "Tandem assessment of spoofing countermeasures and automatic speaker verification: Fundamentals," in IEEE/ACM TASLP, vol. 28, 2020.

RawBoost data augmentation

- To introduce extrinsic variability stemming from, e.g., encoding, transmission effects and compression effects into training data.
- Rawboost [9] processes:
 - Linear and non-linear convolutive noise
 - Impulsive signal-dependent additive noise
 - 3. Stationary signal-independent additive noise

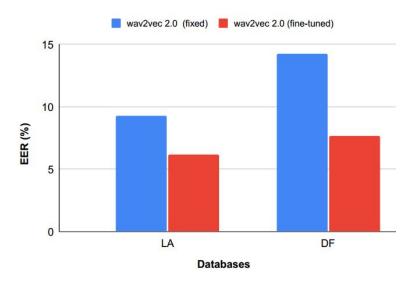
Source code:

RawBoost: https://github.com/TakHemlata/RawBoost-antispoofing

Benefits of fine-tuning SSL front-end

Fine-tune SSL front-end on the ASVspoof 2019 LA train data to achieved better performance [10].

ASVspoof 2021 Challenge dataset



Results

ASVspoof 2021 LA evaluation set

front-end	SA	DA	Pooled EER	Pooled min t-DCF
sinc-layer	×	×	11.47 (11.95)	0.5081 (0.5139)
wav2vec 2.0	×	×	6.15 (6.46)	0.3577 (0.3587)
sinc-layer	√	×	8.73 (11.61)	0.4285 (0.5203)
wav2vec 2.0	√	×	4.48 (6.15)	0.3094 (0.3482)
sinc-layer	√	√	7.65 (7.87)	0.3894 (0.3960)
wav2vec 2.0	√	√	0.82 (1.00)	0.2066 (0.2120)

~90%

relative improvement

ASVspoof 2021 DF evaluation set

front-end	SA	DA	Pooled EER
sinc-layer	×	×	21.06 (22.11)
wav2vec 2.0	×	×	7.69 (9.48)
sinc-layer	✓	×	23.22 (25.08)
wav2vec 2.0	✓	×	4.57 (7.70)
sinc-layer	✓	√	24.42 (25.38)
wav2vec 2.0	✓	√	2.85 (3.69)

~88%

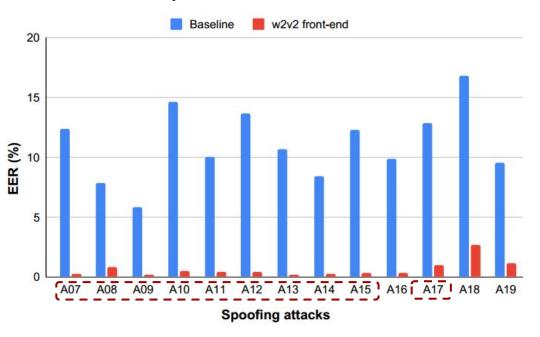
relative improvement

- Best single system results on ASVspoof 2021 challenge LA and DF task till date.
- Improve robustness in detecting previously unseen spoofing attacks (100+ spoofing attacks in DF database).

Results for each spoofing attack

Improve generalisation towards unseen spoofing attacks.

ASVspoof 2021 LA evaluation set



Results for each codec condition

ASVspoof 2021 LA evaluation set

Baseline w2v2 front-end 15 3 10 5

alwa

none

pstn

g722

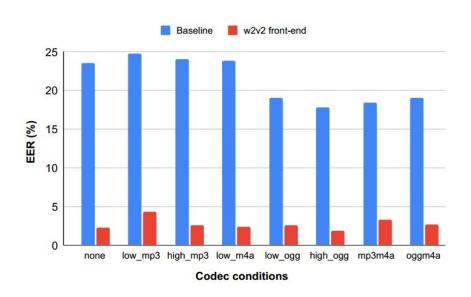
Codec conditions

ulaw

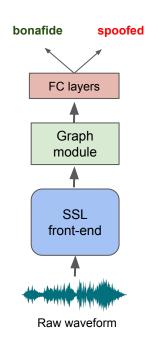
gsm

opus

ASVspoof 2021 DF evaluation set



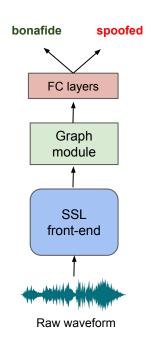
Results using simpler CM



Train on ASVspoof 2019 LA training dataset

Front-end	DA	Test Database	Pooled EER (%)	Pooled min t-DCF
Wav2vec 2.0 (fixed)	Yes	ASVspoof 2021 LA	2.26	0.2407
Wav2vec 2.0 (fixed)	Yes	ASVspoof 2021 DF	7.28	-
Wav2vec 2.0 (fine-tuned)	Yes	ASVspoof 2021 LA	1.19	0.2175
Wav2vec 2.0 (fine-tuned)	Yes	ASVspoof 2021 DF	4.38	-

Results using simpler CM



Train on ASVspoof 2019 LA training dataset

Front-end	DA	Test Database	Pooled EER (%)	Pooled min t-DCF
Wav2vec 2.0 (fixed)	Yes	ASVspoof 2021 LA	2.26	0.2407
Wav2vec 2.0 (fixed)	Yes	ASVspoof 2021 DF	7.28	-
Wav2vec 2.0 (fine-tuned)	Yes	ASVspoof 2021 LA	1.19	0.2175
Wav2vec 2.0 (fine-tuned)	Yes	ASVspoof 2021 DF	4.38	-

Conclusions

- Our results are best single system results reported so far on ASVspoof 2021 LA and DF database.
- SSL front-end improves domain robustness in detecting previously unseen spoofing attacks.
- Our system achieved ~90% and ~88% relative improvement over baseline system for LA and DF database.
- RawBoost (DA) further improves robustness in more realistic challenging environments:
 - telephony and audio codec
 - compression effect in DF dataset

Source code:

https://github.com/TakHemlata/SSL_Anti-spoofing

Thank you

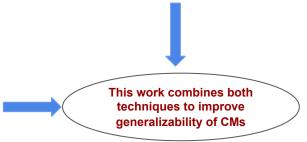
Motivation

Possible directions:

- Use larger and diverse representative training database.
 - Advantage: better generalisation
 - Disadvantage: To collect sufficient amount of spoof data requires more efforts and technically demanding.

Potential solution: Can we use **self-supervised models** trained on large diverse datasets to learn more generalised representation?

- Data augmentation
 - To further enhance the performance in challenging environments such as telephonic, audio codec and compression.



Self-attentive aggregation (SA) layer

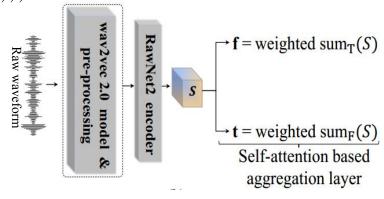
Explore self-attentive aggregation layer [5] to extract the discriminative feature representations.

$$\mathbf{S} \in \mathbb{R}^{C \times F \times T}$$

$$W_{F \times T} = \text{Softmax}(\text{conv2d}(BN(SeLU(\text{conv2d}(\mathbf{S})))))$$

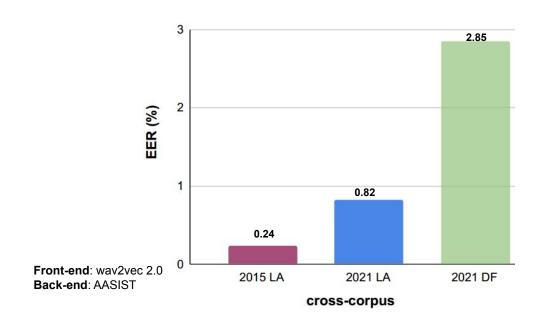
spectral feature
$$\mathbf{f}_{C \times F} = \sum_{T} \mathbf{S} W$$
 weighted sum along the time

temporal feature
$$\mathbf{t}_{C imes T} = \sum_F \mathbf{S} W$$
 weighted sum along the Freq.



Cross database evaluations

CM system is trained on ASVspoof 2019 LA training dataset and tested cross databases.



Motivation

Possible directions:

- Use larger and diverse representative training database.
 - Advantage: better generalisation
 - Disadvantage: It's impractical- never enough

Potential solution: Can we use **self-supervised models** trained on large diverse datasets to learn more generalised representation?

- Data augmentation
 - Further enhance the performance in challenging environments.

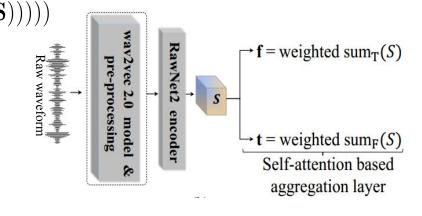
Self-attentive aggregation (SA) layer

- Explore self-attentive aggregation layer [5] to extract the discriminative feature representations.
- Aggregate the information using learnable weight along the spectral and temporal domains.

weighted sum along the Freq.

$$\mathbf{S} \in \mathbb{R}^{C \times F \times T}$$

$$W_{F imes T} = ext{Softmax}(ext{conv2d}(ext{BN}(ext{SeLU}(ext{conv2d}(extbf{S})))))$$
 spectral feature $\mathbf{f}_{C imes F} = \sum_{T} \mathbf{S}W$ weighted sum along the time
$$\mathbf{t}_{C imes T} = \sum_{F} \mathbf{S}W$$
 temporal feature $\mathbf{t}_{C imes T} = \sum_{F} \mathbf{S}W$



RawBoost data augmentation

- To introduce extrinsic variability stemming from, e.g., encoding, transmission effects and compression effects into training data.
- Rawboost [9] processes:
 - Linear and non-linear convolutive noise
 - 2. Impulsive signal-dependent additive noise
 - 3. Stationary signal-independent additive noise

ASVspoof 2021 LA database
Suitable for telephony application
(encoding & transmission)

