Language-independent Speaker Anonymization Approach using Self-supervised Pre-trained Models

Xiaoxiao Miao¹, Xin Wang¹, Erica Cooper¹, Junichi Yamagishi¹, Natalia Tomashenko²

¹ National Institute of Informatics, Japan ² LIA, University of Avignon, France

Outline

- Introduction
- Motivation
- Language-independent SSL-based Speaker Anonymization System
 - SSL-based Content Encoder
 - ECAPA-TDNN Speaker Encoder
 - HiFi-GAN
- Experimental Results and Analysis
- Conclusions and future work

Introduction

- Definition^[1] from VoicePrivacy challenge (VPC) 2020
 - Suppress the speaker's identity
 - Preserve the linguistic content, other paralinguistic attributes such as age, gender, emotion, and the diversity of speech
 - Allowing downstream tasks: human communication, automated processing, model training, etc.
- VPC2020 primary baseline^[1]: ASR + TTS. B1

Step1: disentangle speech into F0, BN, and x-vector

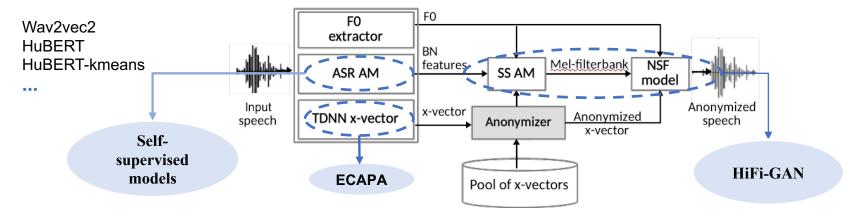
Step2: anonymize x-vector

Step3: synthesize anonymized speech using source F0, BN, and anonymized

x-vector

Motivation

- Can we create one speaker anonymization system (SAS) that can anonymize speech from unseen languages?
 - Directly use B1- content is distorted because of the language-specific ASR AM

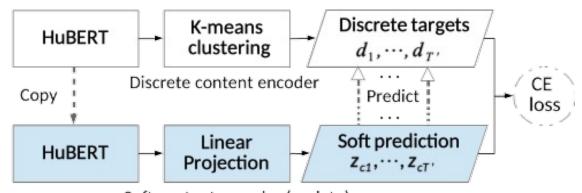


- SSL-based content encoder provides general context representations
- Updating the TDNN x-vector to the ECAPA-TDNN speaker encoder
- Using a HiFi-GAN as the speech waveform generation model instead of the traditional TTS pipeline to make the system more efficiently

SSL-based SAS --SSL

- HuBERT^[2]
 - Continuous features contain both context and speaker information.
 Not suitable for speech disentanglement
- HuBERT-km^[3]
 - Apply k-means algorithm over HuBERT continuous features
 - Discrete features get rid of speaker identity attributes.

 While inaccurate discrete features lead to incorrect pronunciations
- HuBERT-based Soft Content Encoder^[4]
 - Trade-off between continuous and discrete features



Soft content encoder (update)

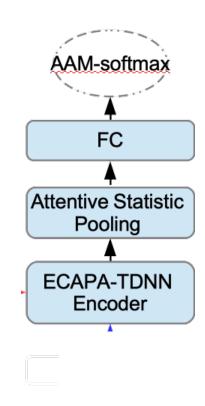
^[2] Wei-Ning Hsu, et al., "HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units," TASLP 2021

^[3] Kushal Lakhotia, et al., "Generative spoken language modeling from raw audio," TACL 2021

^[4] Benjamin van Niekerk, et al, "A comparison of discrete and soft speech units for improved voice conversion," ICASSP 2022

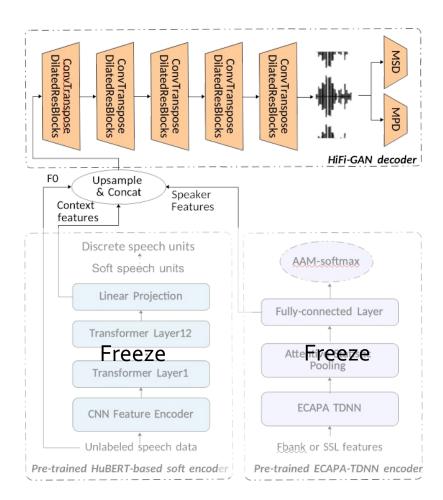
SSL-based SAS --ECAPA

• ECAPA-TDNN^[5]



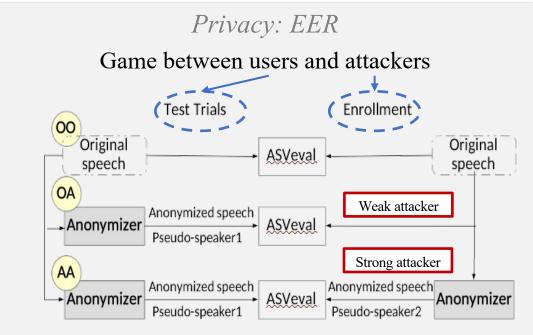
SSL-based SAS --HiFiGAN

- Frame-wise F0, context, and segment al-level speaker embedding are up-sampled and concatenated
- Then passed to HiFi-GAN^[6], which contains one generator and two discriminators:
 - Multi-period discriminator (MPD) captures the periodic patterns
 - Multi-scale discriminator (MSD)
 exploring long-range and consecutive
 interactions

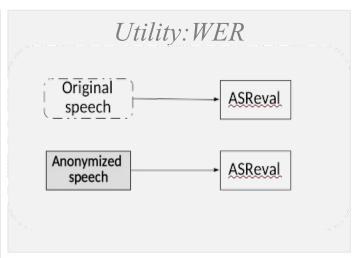


Experimental Results and Analysis

Evaluation Plan



- Unprotected (OO): no anonymization
- Ignorant attacker (OA): users anonymize
- Lazy-informed (AA): users & attackers anonymize, attackers know the SAS, but don't know the specific parameters, would get the different pseudo speaker.



Experiment details

Training set

HuBERT soft : LibriSpeech-100^[9]

HiFi-GAN: LibriTTS-100^[10]

Test set:

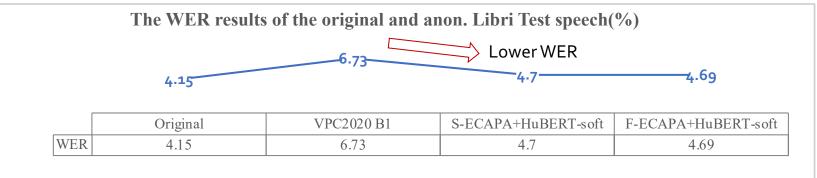
LibriSpeech^[10],VCTK^[11]

- ASV_{eval}^{Eng} : TDNN \supseteq LibriSpeech-
- ASR_{eval}^{Eng} : TDNN-E $360^{[9]}$

Experimental Results and Analysis

English Speaker Anonymization





- The proposed SAS evaluated on English data:
 - Protect the speaker information almost as well as VPC B1
 - Provide more reliable linguistic information.

Experimental Results and Analysis

- Mandarin Speaker Anonymization
 - Experiment details
 - Test set sampled from AISHELL-3^[12]: 10120 enrollment-test trials
 - ASV_{eval}^{mand}: F-ECAPA trained on CN-Celeb-1&2^[13]
 - ASR^{mand}: publicly available Transformer* trained on AISHELL-1^[14]

(%)		S-ECAPA + HuBERT-soft	F-ECAPA + HuBERT-soft
EER	00	2.04	
	OA	40.81	37.58
	AA	23.26	22.98
CER	Original	10.36	10.36
	Anony.	21.18	18.86

- Proposed SAS is simpler without any language-specific models can be adopted to other languages successfully
- CERs on the anonymized trials were increased to about 20%, suggesting degradation on the speech content

^{*}SpeechBrain: https://github.com/speechbrain/speechbrain/tree/develop/recipes/AISHELL-1/ASR/transformer

^[12] Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li, "AISHELL-3: A Multi-Speaker Mandarin TTS Corpus," INTERSPEECH, 2021

^[13] Lantian Li, et al., "CN-Celeb: multi-genre speaker recognition," Speech Communication, 2022

Conclusions and Future Work

- Can we create one speaker anonymization system (SAS) that can anonymize speech from unseen languages?
 - Yes, we can use Language-independent SSL-based SAS.
- The limitation of the proposed SAS:
 - There is still room to improve the performance of the SAS under unseen condition.
 - See our Interspeech2022 paper: https://arxiv.org/abs/2203.14834
- Audio samples and source code are available at https://github.com/nii-yamagishilab/SSL-SAS

Thanks for listening

Q&A