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INTRODUCTION

Speech enhancement

Speech quality and intelligibility severely degrades in noisy environment

Speech enhancement aims to improve the quality and intelligibility of degraded speech
Depending on the usage scenario:

Noise reduction

Intelligibility boosting

Far-End Process: Near-End Process:
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INTRODUCTION

Speech enhancement

Speech quality and intelligibility severely degrades in noisy environment

Speech enhancement aims to improve the quality and intelligibility of degraded speech
Depending on the usage scenario:

Noise reduction -> removing noise before transmission

Intelligibility boosting

Far-End Process: Near-End Process:
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INTRODUCTION

Speech enhancement

Speech quality and intelligibility severely degrades in noisy environment

Speech enhancement aims to improve the quality and intelligibility of degraded speech
Depending on the usage scenario:

Noise reduction

Intelligibility boosting -> enhancing speech before playback

Far-End Process: Near-End Process:
Noise reduction Intelligibility boosting
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INTRODUCTION

Noise reduction

In speaker side, signal captured by the mic is a mixture of speech and noise
Modity noisy signal to suppress the noise contained in speech
Applications: Mobile telephony, Hearing aids, robust ASR, etc.

Demo:
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INTRODUCTION

Noise reduction

Intelligibility boosting

In listener side, noise source is physically present

Modity clean signal only to enhance its intelligibility

Applications: Mobile telephony, public-address announcement, etc.

/// noise

speech
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Demo:
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*  Modified speech in noise [ 1)



THESIS OUTLINE

Conventional approaches for noise reduction (Chapter 2)
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THESIS OUTLINE

Conventional approaches for intelligibility boosting (Chapter 2)

s

Intelligibility | enhanced
. speech boosting speech )) %

Listener

Most are based on signal processing:

Knowledge-based modification, .e.g., formant enhancement, dynamic range compression
Lombard-style conversion, i.e., convert to Lombard speech using voice conversion techniques)

Metric-oriented optimization -> optimize a certain intelligibility metric




THESIS OUTLINE

Thesis issues

Primary goal:

Enhance speech quality and intelligibility in speech communication

-> Improve noise reduction and intelligibility boosting

Far-End Process: Near-End Process:
Noise reduction Intelligibility boosting
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THESIS OUTLINE

Thesis issues

For noise reduction:

Issue 1: Improving limited noise generalization capability of DNN-based noise reduction model (Chapter 3)
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THESIS OUTLINE

Thesis issues

For noise reduction:

Issue 1: Improving limited noise generalization capability of DNN-based noise reduction model (Chapter 3)

Issue 2: Alleviating speech quality degradation caused by inverse STFT with noisy phase (Chapter 3)
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THESIS OUTLINE

Thesis issues

For noise reduction:

Issue 1: Improving limited noise generalization capability of DNN-based noise reduction model (Chapter 3)
Issue 2: Alleviating speech quality degradation caused by inverse STFT with noisy phase (Chapter 3)

Issue 3: Improving noise reduction for device-degraded speech (Chapter 4)
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THESIS OUTLINE

Thesis issues

For intelligibility boosting:

Issue 4: Improving the performance of intelligibility boosting by leveraging deep learning (Chapter 5)

Intelligibility | enhanced
. speech boosting speech )) &

Listener

For joint noise reduction and intelligibility boosting:

Issue 5: integrating noise reduction with intelligibility boosting for full-end speech enhancement (Chapter 6)




THESIS OUTLINE

Roadmap:
i Chapter 2 Review
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ISSUES | &2

Background

Neural noise reduction learns to convert noisy speech features into clean ones

Trained with pairs of clean speech and noisy speech

Data-driven
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ISSUES | &2

Background

Neural noise reduction learns to convert noisy speech features into clean ones

Trained with pairs of clean speech and noisy speech

Data-driven

Evaluation metrics

Objective quality: PESQ, CSIG, CBAK, COVL, etc.
Objective intelligibility: SIIB, HASPI, ESTOI, etc.

Subjective listening test: MOS score, preference test, etc.
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ISSUES | &2

Motivation

Neural noise reduction learns to convert noisy speech features into clean ones

As a data-driven model, we are concerned its noise generalizability — Robustness to unseen

noises (issue 1)

Conventional approaches operate only on magnitude spectrogram but disregard phase.

While phase distortion degrades noise reduction performance (issue 2)
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Motivation

Neural noise reduction learns to convert noisy speech features into clean ones

As a data-driven model, we are concerned its noise generalizability — Robustness to unseen

noises (issue 1)

Conventional approaches operate only on magnitude spectrogram but disregard phase.
While phase distortion degrades noise reduction performance (issue 2)

Solutions:

Introduce neural noise temples to improve noise generalizability



ISSUES | &2

Motivation

Neural noise reduction learns to convert noisy speech features into clean ones

As a data-driven model, we are concerned its noise generalizability — Robustness to unseen

noises (issue 1)

Conventional approaches operate only on magnitude spectrogram but disregard phase.
While phase distortion degrades noise reduction performance (issue 2)

Solutions:
Introduce neural noise temples to improve noise generalizability

Investigate applying neural vocoder, instead of ISTFT, for waveform synthesis to alleviate phase

distortion 0



ISSUES 1&2: METHOD

Key idea:
Model noise dynamics and feed it into network training, known as Noise Aware Training (NAT) [1]

Conventional NAT relied on separate module to get noise estimation, might be suboptimal

Training Stage
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Figure from [1]
[T Xu,Y,, Du,J., Dai, L.R.and Lee, C.H., 2014. Dynamic noise aware training for speech enhancement based on a
deep neural networks. In Fifteenth Annual Conference of the International Speech Communication Association.
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Key idea:
Model noise dynamics and feed it into network training, known as Noise Aware Training (NAT) [1]

Conventional NAT relied on separate module to get noise estimation, might be suboptimal
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deep neural networks. In Fifteenth Annual Conference of the International Speech Communication Association.



ISSUES 1&2: METHOD

Neural noise templates —— Noise tokens:
Inspired by Style token [2]; Generated noise embedding is in frame-level to capture noise dynamics

Intuition: Learn noise latent -> Represent new noise into the combination of old templates by assigning

weights -> Improve generalization

Noise token layer

Environment-aware Template A
STFT Enhancement 0.2
Do) Noise Encoder |- Attention TemplateB | :
speech’ :
0.7
M Template C
Feature Extraction ; :
(STFT) e 5
Noise Reduction ) )
DNN Model Noise embedding [«
|
[2] Wang, Y., Stanton, D., Zhang,Y., Skerry-Ryan, R.J., Battenberg, E., Shor, J., Xiao,Y., Ren, F, Jia,Y. and Saurous, R.A., 2018. Style tokens: @

Unsupervised style modeling, control and transfer in end-to-end speech synthesis. arXiv preprint arXiv:1803.09017.



ISSUES 1&2: METHOD

Neural noise templates —— Noise tokens:

Noise tokens are jointly optimized with the whole system, and can be regarded as dictionaries (*analogy
to noise dictionaries in NMF-based approach)

Unseen noises are factorized and then represented as the weighted sum of trained noise tokens through
attention module

Unseen noise --> linear combination of trained templates (which are seen to the model)

. ' Noise token layer
Environment-aware 5 A Template A

STFT Enhancement 0.2
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Noisy | ! 5 i |
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ISSUES [&2: EXPERIMENT

Experiment 1: Performance analysis with noise tokens

Noise token module: 16 learnable tokens; Multi-head attention with 8 heads

Data: ENoise token layer |
; Template A
: : . . 0.2
50-hour noisy speech with 21 training noise types .
Y >P d P { Noise Encoder Attention Template B ‘
Tested on 4 unseen noises; SNR={-2.5, 2.5, 7.5, 12.5, 17.5} dB s |
5 emplate 5
Three DNN architectures: o
Standard 2-layer BLSTM
CNN+BLSTM used in VoiceFilter [3]
Gaussian-weighted Transformer used in T-GSA [4] (Simplified by reducing number of blocks)
[3] Q.Wang, H. Muckenhirn, K.Wilson, P. Sridhar, Z.Wu, |. Hershey, R.A. Saurous, R. J.Weiss,Y. Jia, and I. L. Moreno, “Voicefilter: Targeted
voice separation by speaker-conditioned spectrogram masking,” arXiv preprint arXiv:1810.04826
[4] ). Kim, M. EI-Khamy, and . Lee,“Transformer with gaussian weighted self-attention for speech enhancement,” arXiv preprint e

arXiv:1910.06762,2019.



ISSUES [&2: EXPERIMENT

Result 1: Performance analysis with noise tokens

Three tested systems (all used ISTFT for synthesis):

w/0 noise embedding

DNAT (Dynamic noise aware training): w/ noise embedding; Obtained by a separate noise estimation module using
a noise tracking algorithm

NTs (Noise tokens): w/ noise embedding; Obtained by proposed noise token module

, w/0 embedding with DNAT with NTs
Architectures
PESQ STOI PESQ | STOI PESQ | STOI
BLSTM 2.686 0.896 2.692 | 0.898 2.858 | 0.914
VoiceFilter 2.792 0.904 2771 | 0.902 2907 | 0916
T-GSA 2.754 0.906 2.726 | 0.902 2.808 | 0.912




ISSUES [&2: EXPERIMENT

Result 1: Performance analysis with noise tokens

Three tested systems (all used ISTFT for synthesis)

m) Noise token consistently improves the noise reduction performance across all three tested architectures under unseen

noise conditions

, w/0 embedding with DNAT with NTs
Architectures
PESQ STOI PESQ | STOI PESQ | STOI
BLSTM 2.686 0.896 2.692 | 0.898 2.858 | 0.914
VoiceFilter 2.792 0.904 2771 | 0.902 2907 | 0916
T-GSA 2.754 0.906 2.726 | 0.902 2.808 | 0.912




ISSUES [&2: EXPERIMENT

Experiment 2: Impact of noise diversity INoiss token layer | RSN
i 02| ;

Effect of learned noise tokens: [ Noise Encoder|-—] Attention (10| | Template B | -

’ 07| |

Template C

We expect that learned tokens can model or capture noise patterns

More noise types fed into training, learned tokens have better noise representation ability

Data:

Four noisy datasets, all have 50 hours duration

Only differed in the number of noise types included

The more types a dataset includes, the more diverse it is

Generated {N7, N12, N16, N21}, each includes {7, 12, 16, 21} noise types

N21 is the same as what we used in Experiment 1, and has the best noise diversity




ISSUES [&2: EXPERIMENT

Result 2: Impact of noise diversity

Both used ISTFT for waveform synthesis
Noise tokens bring higher relative improvements on PESQ with increasing noise diversity

Noise tokens can effectively exploit multiple noises due to the modelling ability of their trainable templates

, BLSTM w/o NTs BLSTM with NTs
Noise corpus — —
PESQ Relative imp. PESQ Relative imp.
N7 2.564 0.00% 2.657 0.00%
N12 2.639 2.94% 2.786 4.86 %
N16 2.672 4.20% 2.812 5.82 %
N21 2.686 4.71% 2.858 7.54 % @




ISSUES [&2: EXPERIMENT

Experiment 3: Vocoder-based waveform generation module

Apply WaveRNN [5] vocoder to synthesize waveform

Enhanced magnitude spectrogram is converted to 80-dim Mel-spectrogram via an additional NN to (1) further

suppress residual noises; and (2) as input for WaveRNN
WaveRNN directly generates waveforms to avoid incorporating noisy phase

WaveRNN is pre-trained as a speaker-independent model using VCTK corpus
v

\ Enhanced | Mel-spectrogram Deénoised
“§TFT magnitude "| correction Network [ WaVeRNN  — speech
Waveform | Phone Encoder
Generation

—— | Speaker Encoder

[5] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,N. Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord,S. Dieleman, and K. 0
Kavukcuoglu, “Efficient neural audio synthesis,” arXiv preprint arXiv:1802.08435, 2018.



ISSUES [&2: EXPERIMENT

Result 3: Objective evaluations for vocoder-based waveform generation module
Vocoder-based generation is much worse than the traditional ISTFT, in terms of objective measures

Why? --> Probable reason: PESQ and STOI are not designed to evaluate neural vocoders

Methods PESQ STOI

Noisy 2.021 0.833

Use ISTFT to synthesiz¢| — N'T-ISTFT 2.858 0.914
Use WaveRNN to synthetize — NT-WG 2.509 0.867

Let's look into listening test results! @



ISSUES [&2: EXPERIMENT

Experiment 4: Listening tests

Six evaluated systems
Baseline: Standard BLSTM model; (Use ISTFT to generate waveform)
NT-ISTFT: BLSTM model + Noise tokens; Use ISTFT to generate waveform
NT-WG: BLSTM model + Noise tokens; Use WaveRNN to generate waveform -> expected to be the best
WG: Directly apply Waveform generation module to raw noisy speech; Use WaveRNN
Clean: Raw clean speech

Noisy: Unprocessed noisy speech



ISSUES [&2: EXPERIMENT

Experiment 4: Listening tests

Six evaluated systems
Baseline: Standard BLSTM model; (Use ISTFT to generate waveform)
NT-ISTFT: BLSTM model + Noise tokens; Use ISTFT to generate waveform
NT-WG: BLSTM model + Noise tokens; Use WaveRNN to generate waveform
WG: Directly apply Waveform generation module to raw noisy speech; Use WaveRNN
Clean: Raw clean speech

Noisy: Unprocessed noisy speech

Rated in three aspects (521 listeners participated)

(1) speech quality; (2) noise suppression; and (3) overall performance



ISSUES [&2: EXPERIMENT

Result 4: Listening tests

g o lel

NT-ISTFT outperforms Baseline in all three scores

Compared to NT-ISTFT, NT-WG shows higher U e e e e o
(a) Results on speech quality

performances, especially on the noise suppression SR

score (significant) T 7 ? % ?




ISSUES [&2: EXPERIMENT

Result 4: Listening tests
NT-ISTFT outperforms Baseline in all three scores

Compared to NT-ISTFT, NT-WG shows higher
performances, especially on the noise suppression

score (significant)

Surprisingly, WG module itself can even outperform
NT-ISTFT

However, we found there are limited but some very
bad-quality cases (mumbling) in vocoder-generated

systems.

5.0

Noise Suppression

L]
°
Noi Baseline NT-ISTFT NT-WG WG Clean
(a) Results on speech quality
+ +
L]
[‘] []
+ +
Nois Baseline NT-ISTFT NT-WG WG Clean
(b) Results on noise suppression
+ —
o
. o
\\.J
LJ .
o
. €
Nois Baseline NT-ISTFT NT-WG WG Clean

(c) Results on overall performance




ISSUES |&2: SUMMARY

Propose noise token model for issue 1
To alleviate the noise mismatch problem of DNN-based noise reduction model

Noise token is effective across different network architectures and brings higher performance growth

with increasing noise diversity
Propose waveform generation module for issue 2
To synthesize the waveform using WaveRNN vocoder, instead of traditional ISTFT

Subjective listening tests show that the residual noise can be significantly reduced by the waveform

generation module
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Introduction
Issues |&2: Improve noise generalization and alleviate phase distortion

Issue 3: Improve noise reduction for device-degraded speech



ISSUE 3: MOTIVATION

Transform device-degraded speech into high-quality ones
Inissues 1&2 (Chapter 3), only additive noise was considered
General device-degraded speech features: background noise, room reverb, and bad
microphone response.

Degraded version | - i )
iPhone-bedroom: 7*‘ >1dio: [* g

These factors are jointly considered. We collectively refer to as the channel factor

Enhance these recordings by simultaneously removing noise, reverb, and also applying pleasing

audio effect via a unified network



ISSUE 3: MOTIVATION

Transform device-degraded speech into high-quality ones
Inissues 1&2 (Chapter 3), only additive noise was considered
General device-degraded speech features: background noise, room reverb, and bad
microphone response.
These factors are jointly considered. We collectively refer to as the channel factor

Enhance these recordings by simultaneously removing noise, reverb, and also applying pleasing

audio effect via a unified network

Explore TTS techniques on noise reduction task
Regard this task as a style transfer task, from low quality style to high quality

Apply neural waveform model to synthesize speech, instead of using ISTFT



ISSUE 3: METHOD

Reference audio

Overview of system diagram
Encoder

Filter out the channel characteristics from the input audio

Low-quality

input audio

Channel Modeling

Disentangle the channel factor from a reference audio
Decoder

Predict the target-style Mel spectrogram, conditioned on

extracted channel factor

WaveRNN vocoder

Generate target-style waveform (professional high-quality recording)

(e.g. studio quality) Modeling

Channel

| Channel | .-~
Factor |

I Classifier #2

Channel

v

Channel
Classifier #1

Japoaouj
Decoder

Speaker

Classifier

Mel spectrogram
¥

WaveRNN
vocoder

Target
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ISSUE 3: METHOD

Channel
. Reference audio Ch I Ch I -7 |Classifier #2
Component details (e.g. studio quality) Mocajglr;:g d Faacr':gf <
-«| Speaker
Classifier
Encoder
. .. . . Mel spectrogram .
Filter out the channel characteristics from the input audio m 5
Low-quality | S I '8 -, " WaveRNN
Consists of 2-D CNNs+BLSTM input audio 2 g vocoder
o o o v Target
Adversarial training Channel waveform
Classifier #1

Add channel classifier #1 to encourage encoder to

produce channel-invariant features



ISSUE 3:

METHOD

Reference audio

Component details
Channel modeling

Disentangle the channel factor from a reference audio

Additional classifiers

Channel classifier #2 used to encourage extracted channel
factor to be more informative about channel information
Speaker classifier used for adversarial training, to filter out

the remained speaker information from the channel factor

(e.g. studio quality)

Low-quality

input audio

. Channel
| channel . Channel | .-~ Classifier #2
Modeling Factor .| Speaker
Classifier
Y — Mel spectrogram
m o
= ye]
o |——> O
o ]
@ (@)
v
Channel
Classifier #1

WaveRNN
vocoder

Target
waveform




ISSUE 3: METHOD

Component details

Channel modeling

Shares a similar network structure with “Noise Token”

Reference audio

Design an interpretable and controllable channel modeling module. (e.g.,

Token A might represent reverb level, Token B represents noise level, etc.)

v
Conv block 1
v
Conv block 2
v

Conv block 6

GRU

---------------------------------------------

Channel token layer

0.2

Multi-head < 0.1 Token B
Attention

}
Channel factor



ISSUE 3:

METHOD

Component details

Pros

Enables module to deal with the unseen channel condition

and unlabeled reference audio

Reference audio

Controllable style transfer by adjusting weights of learned

tokens

Cons

Need an additional provided reference audio

Bad performance if channel factor not accurate

Conv block 1

Conv block 2

Conv block 6

GRU

---------------------------------------------

Channel token layer

0.2

Multi-head < 0.1 Token B
Attention
I 0.7

}
Channel factor



ISSUE 3: METHOD

Channel
. Reference audio Channel | Channel .-~ |Classifier #2
Component details (e.g- studio quality) | Modeling | | Factor |-
.| Speaker
Classifier
Decoder
Yy — ] Mel spectrogram i
Predict the target-style Mel spectrogram, conditioned on Low-quality 3 | FTER ¥ [wavernN
input audio S Rt '!2_ vocoder
o 2R e
extracted channel factor - l
v Target
. . : : Channel waveform
Similar structure with Tacotron2-Decoder, including Prenet, Classifier #1
Postnet, and auto-regressive generation :
Pre-Net |« Time Delay
Channel :
anne o -
WaveRNN vocoder factor 7 | |=| |Z| |8 5 2
: : 8 — E > 9 > 5 | L °
A pre-trained universal WaveRNN vocoder encoder |3 2| 2] |2 8 g
output | = = g




ISSUES 3: EXPERIMENTS

Dataset
DAPS (device and produced speech) dataset

It provides aligned recordings of high-quality speech and a number of versions of low-quality speech,

recorded in noisy environment with cheap device.

Two unseen speakers (1 male + 1female), and three unseen channels are used for testing: (1)

ipad_livingroom, (2) ipadflat office, and (3) iphone bedroom



ISSUES 3: EXPERIMENTS

Ablation Stu dy Reference audio .

(e.g. studio quality)

ED: contains only encoder and decoder

ED+CM: contains encoder, decoder, and channel modelling
input audio

FULL (ED+CM+Classifiers): contains encoder. decoder, channel

modelling, and 3 auxiliary classifiers

Linear+ISTET: Same settings with FULL model, except the decoder

output was linear spectrogram. Use ISTFT to synthesize waveform

Channel

Modeling

| Channel | .-
Factor [

Low-quality

|

Decoder

v

Channel
Classifier #1

Channel

|Classifier #2

Speaker
Classifier
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L

-
e
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-
-
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-
-
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Mel spectrogram
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WaveRNN
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|

Target
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ISSUES 3: EXPERIMENTS

Other compared methods

Raw audio: lower bound

Studio audio: higher bound

WPE: signal-processing method for speech dereverberation

WPE+L: signal-processing method for speech dereverberation + LogMMSE for denoising

WaveNet [1]: Denoising-WaveNet model

[I] Jiagi Su,Adam Finkelstein, and Zeyu Jin, “Perceptually-motivated environment-specific speech enhancement,” in ICASSP 2019-2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 70157019 Q



ISSUES 3: EXPERIMENTS

Objective results

System CSIG CBAK COVL STOI
FULL consistently improves its two simplified versions, ED and Raw audio 3.05 2.23 2.60 0.869
ED+CM, and other compared methods (WPE, WPE+L, and WPE 3.16 241 2.75 0.888
WaveNet) WPE+L 2.81 2.33 252 0.811
FULL system is worse than Linear-ISTFT in terms of CBAK and Wavenet 3.67 242 308 0904

Linear-ISTFT  3.94 2.61 337  0.905
COVL

ED 3.89 2.48 328  0.906

ED+CM 3.73 2.49 3.16  0.886

FULL 3.94 2.52 334  0.906

Objective metrics usually give lower scores to vocoder-

generated waveform



ISSUES 3: EXPERIMENTS

Subjective results

Conducted crowdsourced listening tests, 165 individuals

rated quality for given samples with 5-point MOS score

FULL gives the best performance
FULL > Linear-ISTFT, means WaveRNN improves the

quality of the synthetic waveform, compared with ISTFT

»
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Audio samples: https://nii-yamagishilab.github.io/hylic66-demos/evr-slt2021/



ISSUES 3: SUMMARY

Apply style transfer approach into noise reduction task
For device-degraded speech

Jointly consider denoising, dereverberation, and applying pleasing audio effect to low-quality recordings

Mel+WaveRNN waveform synthesis module outperforms Linear+ISTFT in subjective evaluations

Proposed system outperforms a time-domain model (WaveNet) and several signal-processing baselines

However...

Still require expensive parallel recordings for training -> Expand to non-parallel style transfer?
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Introduction
Issues |&2: Improve noise generalization and alleviate phase distortion
Issue 3: Improve noise reduction for device-degraded speech

Issue 4: Improve the performance of intelligibility boosting by leveraging deep learning



ISSUE 4: BACKGROUND

Speech intelligibility degrades in noisy environment

Cause stressful listening; or even non-understanding for listener

Unlike noise reduction, we cannot suppress noise since it is physically present

Solution

Can we simply increase voice volume? -> Yes, but loud voice causes uncomfortable listening
We seek methods to modify speech signal but without changing its energy (i.e., volume)

Applications: mobile telephony, public-address announcement, etc.

Enhanced
i speech y(n)

i '[<] RIR h(n)
i Ref mic :
i ﬂ&o(n) §

Listener /// v(n) E Q

Input
speech s(n)

*| Algorithm




ISSUE 4. METHOD

How to modify speech?

Reallocate the speech energy on time-frequency domain in such a way as to boost
the acoustic cues that are perceptually crucial

But.. How do we know what kind of acoustic cue is crucial for human perception?



ISSUE 4. METHOD

How to modify speech?

Reallocate the speech energy on time-frequency domain in such a way as to boost
the acoustic cues that are perceptually crucial

But.. How do we know what kind of acoustic cue is crucial for human perception?
Rely on objective speech intelligibility metrics
Many objective metrics have been proposed to predict the intelligibility of speech

Specifically, they require a clean speech signal as the reference to predict intelligibility
for distorted (speech-in-noise) speech

Our goal is thus formulated as: Modifying speech to maximize its objective
intelligibility scores (s )



ISSUE 4. METHOD

Difficulties
Intelligibility metrics are usually quite complex and mathematically intractable

Hard to solve such an optimization problem in an efficient manner



ISSUE 4. METHOD

Difficulties
Intelligibility metrics are usually quite complex and mathematically intractable
Hard to solve such an optimization problem in an efficient manner
Solution -> Try GAN
We introduce GAN model into our system
Replace intractable objective metrics with differentiable neural network
Jointly optimize three intelligibility metrics (SIIB, HASPI, and ESTOI) for improved intelligibility

Also optimize two quality metrics (PESQ and ViSQOL) for improved speech quality
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SyStem overview /Truescores«—Q Einctions /Maximum scores
MSE loss \ MSE loss \
Generator (G) enhances the speech signal as the g = rIicled scoros | Predicted scores
radient flowi T : T
intelligibility enhancement module Dkcimindton - Fixed .
Discriminators
. .. . . T t | 1
Discriminator (D) learns to predict the intelligibilit ‘ Gradient flow!
o) ; el N Wk
scores of modified speech Enhanced speech | Enhanced speech
Generator Generator

G is then trained with the guidance of D

Btk -

Input speech Background
noise

(a) Training process of discriminators

B -

Input speech  Background
noise

(b) Training process of generator
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Discriminator

Used to approximate intractable metrics

Q function represents metrics to be modelled, i.e., SIIB,
HASPI, and ESTOI

D tries to accurately predict the score of the modified
speech by minimizing MSE between predicted and true

scores

Optimize true intelligibility metrics (Q function) = Optimize
output scores of D

This is possible since D is differentiable now

True scores :
“~1Q Functions

MSE loss

2N

: Predicted scores
Gradient flowl T

Discriminators

P

Enhancetd speech

Generator

ik -

Input speech Background
noise

(a) Training process of discriminators

MSE loss
| Predicted scores

]
Fixed
Discriminators

Gradient flow M‘”%.‘ '

l Enhancetd speech

Maximum scores
/
N\

Generator

3 4

B -
Input speech Background
noise

(b) Training process of generator
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Generator

Used to modify natural speech as intelligibility

enhancement module

D parameters are fixed, and G is trained to reach the

intelligibility scores as high as possible

MSE between predicted and target maximum scores is set

as G loss

True scores :
“~1Q Functions

MSE loss

2N

: Predicted scores
Gradient flowl T

Discriminators

P

Enhancetd speech

Generator

il

Input speech Background
noise

(a) Training process of discriminators

MSE loss
| Predicted scores

]
Fixed
Discriminators

Gradient flow M‘”%.‘ '

Enhancetd speech

Maximum scores
/
N\

|
|
|
|
|
.

Generator

3 4

B -
Input speech Background
noise

(b) Training process of generator
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ISSUE 4

Model architecture
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ISSUE 4: EXPERIMENTS

Setup

We used 1200 Harvard sentences for training; 120 for test

Each test sentence is mixed with 2 types of unseen noise at 3 SNRs, under 3 reverb
conditions

Intelligibility metrics: SIIB, HASPI, ESTOI

Quality metrics: PESQ and ViSQOL
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5 compared systems:
Unmodified speech: Plain speech without any modification
SSDRC [6]: State-of-the-art system, giving best performance as reported in previous study
iMetricGAN [7]: Our previously proposed model; Developed in 2020
Proposed (S+H+E): New developed, optimizing three intelligibility metrics
Proposed (All): New developed, jointly optimizing three intelligibility metrics and two quality metrics

[6] Zorila, Tudor-Catalin,Varvara Kandia, and Yannis Stylianou. "Speech-in-noise intelligibility improvement based on spectral shaping

and dynamic range compression." Thirteenth Annual Conference of the International Speech Communication Association. 2012.

[7] Li, Haoyu, et al. "iMetricGAN: Intelligibility enhancement for speech-in-noise using generative adversarial network-based metric @
learning." arXiv preprint arXiv:2004.00932 (2020).



ISSUE 4: EXPERIMENTS

Subjective evaluations
We conducted listening test, in which 90 native English speakers were asked to listen and
type in what they heard
Under 2 noises, 3 reverberations and 3 SNR level conditions

Totally 18 different listening conditions investigated

Keyword Accuracy Rate as performance measure for intelligibility

How many correct content words (in percentage) listener can hear
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ISSUE 4: EXPERIMENTS

Weak Reverberation (T60 = 0.30 s)
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* Under Cafeteria noise

SNR: the level of noise

T60: the level of reverberation

Condition with low SNR and high

T60 is more challenging
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— Weak Reverberation (T60 = 030 s)
X 20 90
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Under Cafeteria noise

Proposed (All) performs best
Outperform SSDRC

Accuracy rate greatly improved:
From 49.5% (unmodified) up to
85.2%

Demo: SNR=-5 dB;T60=0.30 s

Clean speech in noise ( /‘*
AN

Modified speech in noise ( )
NI

Text: "We don't like to admit our
small faults"
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ISSUE 4: EXPERIMENTS

Weak Reverberation (T60 = 0.30 s)
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Under Airport Announcement noise

Demo: SNR=-5 dB;T60=0.92 s

* Clean speech in noise ')

N

* Modified speech in noise (/ 2))

 Text:"The bombs left most of the

town in ruins"
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Obijective results:

Under Cafeteria noise

System Intelligibility in 760 ~ 0.30 s Intelligibility in 760 = 0.61 s Intelligibility in 79 = 0.92 s Quality
SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM SIIB  HASPI ESTOI sEPSM  PESQ ViSQOL
Unmodified 1590 192 0228 6.70 15,76  1.77 0220 6.61 9.26 142 0.134  5.89 4.50 5.00
SSDRC 3098 274 0314 7.03 24.72: 227 0213 677 1524 183 0.199 6.04 3:52 2.71
iMetricGAN 3561 285 0302 7.16 2690 234 0256  6.88 1644 189 0.193 6.14 3.20 2.56
S-GAN 37.89 277 0239 17.31 30.57 235 0208 7.04 1791 179 0.154 6.20 2.08 2.02
H-GAN 35.12 312 0242 755 2158 261 020 113 16.57 199 0.149  6.28 2.07 2.08
E-GAN 3420 271 0331 7.21 28.17 236 0285 694 16.03 181 0207 6.15 3.07 2.38

Proposed (S+H+E) 4133 3.11 0313 7.53 3299 262 0268 717 1890 2.00 0.194 6.28 2.63 217
Proposed (All) 3797 295 0324 744 3105 252 0277 Lll 1848 196 0.209 6.26 3.54 2.69
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Obijective results

Under Airport Announcement noise

Sstem Intelligibility in Tg0 ~ 0.30 s Intelligibility in Tg0 = 0.61 s Intelligibility in Tg9 = 0.92 s Quality
SIIB HASPI ESTOI sEPSM SIIB HASPI ESTOI sEPSM SIIB  HASPI ESTOI sEPSM  PESQ ViSQOL

Unmodified 1625 220 0.191 6.63 16.12  2.07 0.190 6.61 9.43 1.58  0.115 5.79 4.50 5.00
SSDRC 3249 338 0286 7.24 25.80 271  0.261 6.85 16.37 217 0203  6.06 3:52 2.71
iMetricGAN 3568 344 0280  7.37 2112 295 0250 695 1798 223 0204 6.18 3:22 2.58
S-GAN 4234 354 0214 7.82 3421 285 0195 7.26 21.75 225 0.160 6.30 2:.12 2.04
H-GAN 39.19 380 0226 7.89 31.50  3.03 0201 7.34 2025 241 0.165 6.37 2.08 2.10
E-GAN 3504 336 0283 7.39 28.88 282 0263 7.03 18.09 223 0205 6.17 3.07 2.40
Proposed (S+H+E) 4345 375 0279 7.94 3531 3.04 0250 7.36 2236 240 0206 @ 6.37 271 2.19
Proposed (All) 4254 372  0.288  7.87 3430 3.00 0257 7.30 2203 238 0209 6.36 3.56 2.67

Large intelligibility improvements in all tested noise and reverberations

Proposed (S+H+E) and Proposed (All) significantly outperform SSDRC baseline @



ISSUE 4: SUMMARY

The proposed system greatly improves the intelligibility of speech under various
listening conditions

Intelligibility boosting is achieved by optimizing multiple intelligibility and quality
metrics through GAN model

GAN helps avoid intractable optimization problem

Our system outperforms the state-of-the-art methods

More demos

https://nii-yamagishilab.github.io/hyliob6-demos/intelligibility/index.html 6
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ISSUE 5: MOTIVATION

Background
Noise exists in both far-end speaker and near-end listener environments

Noise reduction (NR) and intelligibility boosting (IB) should be accordingly carried out

Solution
Disjoint pipeline processing: sequentially apply NR and 1B?

Jointly optimize NR and IB within a unified framework?



ISSUE 5: PROBLEM FORMULATION

Signal model
r=s4+u, §=NR(z), y=I1B(5|v), o=y+w,
Goal

Improve the listening experience for listeners, i.e., the intelligibility of o) and quality of y(n), by

designing effective NR and IB modules.

Far-End Process: Near-End Process:
Noise reduction Intelligibility boosting
| : Enhanced i
)) : :—-[(] ))) Near-end E
| 12(n)| Far-End |3(n) | Near-End ' Noise |
D‘:_> —Eo—)b \ 'ﬂ 1
! s(n) . Process Process | Ref m.c :
. Speaker : e

1 |

1 ! 1

1 ! 1

Far-end \N : | Listener :
Noise “(7) ; | i

Speaker Environment Listener Environment



ISSUE 5: METHOD

Three main modules
1. NR module: suppress noise
2. IB module: further improve the intelligibility of denoised speech

3. Noise token module: extract noise embedding and informs other modules of far-end environmental

information
i Quality E
Noise E metrics E
token : Discriminator 4 :
: training :
T . . i Quality Quality [
clean noisy Far-end - denoised R Near-end _’enhanced :/ discriminator loss !
E— — 1 1
reference input T NR speech IB speech | Eua !
S T S Y : :
i Intelligibility Intelligibility |:
far-end near-end | discriminator loss :
noise y noise : :
i Discriminator L; t I
U SI-SNR ¢ | training I " :
loss : :
T : Intelligibility :
Lsisnr I metrics :

Only for training phase
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Noise reduction module
Adopt Convolutional recurrent network (CRN)
CNN-Encoder — LSTM — CNN-Decoder
Input: Real and Imag spectrogram (2 channels) of noisy speech

Real and Imag Decoders output real and imag spectrogram, respectively

skip connection

___________________

—
()
© 9
—> —> O |—|
g o o :
5 @ — | denoised
= o = —~ 2 h
t o |-l F | Q> speec
w 8 9 — B ~
= og| |2 s(n)
- O
@)




ISSUE 5: METHOD

Intelligibility boosting module
GAN model; Similar to that in Chapter 5
Consists of 1D CNN blocks
Input: Spectrogram magnitude; Output: Amplification factors redistributing speech energy
Optimize 6 metrics:

SIIB, HASPI, and ESTOI as intelligibility metrics;

PESQ, ViSQOL, and HASQI as quality metrics _ S
(0] > - W = S
_ 3 Z 9 2 €2 3 @ | enhanced
L 21,1838 > = |+ £ S| © 5 | speech
» 2 [a®| |2]| [28] |¥UE (n)
L > *' Qg © o) Y
Discriminators are composed of 2D CNN =

6 BI'ocks 6
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Noise token module
Encode the far-end environment information and generate noise embedding
We believe both NR and IB modules can benefit from additional noise information

For example, by exploiting far-end noise knowledge, IB module may avoid to amplify the time-
frequency regions containing much residual noise.

Network design is similar to our previous “noise tokens” work

___________________________________

i Quality

Noise I metrics
token - Discriminator 4
A - training v

| ' . L E Quality e Quality
clean noisy Far-end - denoised N Near-end - enhanced :/ discriminator loss
reference input x NR speech B speech | =
S S Y : :
Intelligibility Intelligibility |
R —> [
far-end near-end ™| discriminator loss
noise noise ! Discriminator L; t
I ! m
u SI-SNR L i training I

loss i '
T I . Intelligibility .
azeny I metrics I

Only for training phase
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Training objective
Note: tintis the maximum scores of the
L = Lint + o * Lqua + b * Lsisnr, selected intelligibility metrics

1. Intelligibility loss: calculated by intelligibility discriminator Lin: = HDmt(y) — tthZ

2. Quality loss: by quality discriminator

3. Speech denoising loss: Scale-Invariant SNR (SI-SNR) calculated by comparing denoised speech with

___________________________________

clean reference ; T
Noise : metrics
token : Discriminator 4
: training
T < . ; Quality [ || Quality
clean noisy Far-end _’denmsed N Near-end _’enhanced :/ discriminator loss
reference input = NR speech IB speech | -
S S Y | p——
' Intelligibility | || Intelligibility
far-end near-end ™| discriminator loss
noise noise : Discriminator L; t
] n
u SII(-)SSI:R ¢ : training I I
i Intelligibility i
Lsisnr : metrics I

Only for training phase



ISSUE 5: EXPERIMENTS

Setup
We used 1200 Harvard sentences for training; 120 for test
Far-end noise type in test set is Cafeteria noise at {6, 10, 14} dB

Near-end noise type in test set is Airport Announcement noise at {-9, -5, -1} dB

Intelligibility metrics: SIIB, HASPI, ESTOI
Quality metrics: PESQ, ViSQOL, and HASQI



ISSUE 5: EXPERIMENTS

/ compared systems:
Noisy: The far-end noisy speech is played under the near end noise without any modification
Noisy+NR: Processed by only NR module

Noisy+IB: Processed by only IB module
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/ compared systems:
Noisy: The far-end noisy speech is played under the near end noise without any modification
Noisy+NR: Processed by only NR module
Noisy+IB: Processed by only IB module

DSPPipeline: Processed by the signal-processing-based disjoint pipeline, consisting of Wiener filter (for NR) and
SSDRC (for IB)

NeuralPipeline: Processed by the neural-network-based disjoint pipeline, consisting of CRN-based NR and

GAN-based IB



ISSUE 5: EXPERIMENTS

/ compared systems:
Noisy: The far-end noisy speech is played under the near end noise without any modification
Noisy+NR: Processed by only NR module

Noisy+IB: Processed by only IB module

DSPPipeline: Processed by the signal-processing-based disjoint pipeline, consisting of Wiener filter (for NR) and

SSDRC (for IB)

NeuralPipeline: Processed by the neural-network-based disjoint pipeline, consisting of CRN-based NR and

GAN-based IB

Joint: Processed by the partial joint model (without noise token); NR and IB are jointly optimized

Joint+NT: Processed by the full joint model (with noise token ); NR and IB are jointly optimized
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Intelligibility scores
Applying only NR or IB does not increase the intelligibility
Joint methods consistently outperform the pipeline

Benefiting from noise token, Joint+NT achieves the overall best performance

Far-end SNR =6 dB Far-end SNR = 10 dB Far-end SNR = 14 dB

SIIB HASPIESTOI SIIB HASPIESTOI =~ SIIB HASPI ESTOI
Noisy 17.98 220 0.221 19.72 231 0.237 21.07 241 0.249
Noisy+NR 19.52 2.24 0.250 20.73 2.32 0.259 21.65 2.39 0.266
Noisy+IB  15.79 2.09 0.180 18.76 2.28 0.206 2191 247 0.232
DSPPipeline 15.58 1.96 0.208 18.22 2.10 0.229 21.06 2.24 0.251
NeuralPipeline 24.47 2.67 0302 27.34 2.85 0.319 30.09 3.00 0.333
Joint 26.16 2.70 0305 28.65 2.84 0.319 30.77 296 0.330
Joint+NT  28.48 2.73 0.320 31.45 2.87 0.334 33.79 2.99 0.344

System
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Quality scores

Intelligibility-enhancing modifications degrade the speech quality at the cost of
increasing intelligibility

Joint methods preserve speech quality well compared to pipeline

Far-end SNR =6 dB  Far-end SNR = 10 dB Far-end SNR = 14 dB

PESQ HASQI ViSQOL PESQ HASQIViSQOL PESQ HASQI ViSQOL
Noisy 1.41 0.15 1.83 1.55 0.18 1.94 1.69 0.21 2.09
Noisy+NR  2.33 0.28 2.48 2.52 032 2.69 2.70 0.36 2.91
Noisy+I1B 1.24 0.10 1.66 1.32 0.12 1.71 1.41 0.14 1.78
DSPPipeline 1.32 0.10 1.68 1.43 0.12 1.74 1.54 0.14 1.81
NeuralPipeline 2.01 0.23 2.14 2.19 0.26 2.25 235 0.28 2.35
Joint 2.14 0.28  2.20 230 030  2.32 243 0.33 243
Joint+NT  2.26 0.30 2.32 245 0.32 243 258 0.35 2.52

System
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- Subjective preference test
- 20 native speakers were recruited
. Listen to a pair of samples and select the one sounds more clear or better

- Still, proposed Joint+NT method performs best

Plain noisy: R

)
DSPPipeline: 4.7 (a)_ DSPPipeline: 3.7
Joint: 30.7 © _—l Joiint: 127 <))

(a) Intelligibility preference test (b) Quality preference test

\
/

(a)

(b)

(©)




ISSUE 5: SUMMARY

We proposed a joint framework integrating noise reduction with intelligibility
boosting to address the full-end SE task

Under this joint framework, these two modules can be jointly optimized

It achieves significant intelligibility gain while preserving speech quality well
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CONCLUSION

We improved noise reduction model:
Improving its noise generalization
Using WaveRNN vocoder to synthesize waveform to alleviate phase distortion
Considering and enhancing general device degradation
We proposed a novel neural intelligibility boosting model:
Introducing GAN into intelligibility boosting model
It outperforms state-of-the-art baseline
We integrated noise reduction with intelligibility boosting:

Addressing full-end speech enhancement task where noises exist in both speaker and listener sides

It outperforms disjoint pipeline methods



FUTURE DIRECTION

In Chapter 3, try non-autoregressive vocoder such as HiFi-GAN
In Chapter 4, try mutual information (MI) minimization to filter out channel characteristic
In Chapter 5, try new reverberation modeling method

In Chapter 6, try end-to-end method that directly maps noisy speech into clean intelligibility-boosted speech

Extend single-channel approach to the use of microphone array
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