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INTRODUCTION

• Speech enhancement

Ø Speech quality and intelligibility severely degrades in noisy environment

Ø Speech enhancement aims to improve the quality and intelligibility of degraded speech

• Depending on the usage scenario:

Ø Noise reduction

Ø Intelligibility boosting -> enhancing speech before playback
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INTRODUCTION

1. Noise reduction

Ø In speaker side, signal captured by the mic is a mixture of speech and noise

Ø Modify noisy signal to suppress the noise contained in speech

Ø Applications: Mobile telephony, Hearing aids, robust ASR, etc.
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Demo:

• Noisy input

• Processed output



INTRODUCTION

1. Noise reduction

2. Intelligibility boosting
Ø In listener side, noise source is physically present

Ø Modify clean signal only to enhance its intelligibility

Ø Applications: Mobile telephony, public-address announcement, etc.
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Demo:

• Clean speech in noise

• Modified speech in noise



THESIS OUTLINE

• Conventional approaches for noise reduction (Chapter 2)

Ø Signal processing approaches:

Ø Spectral subtraction, Wiener filter, MMSE estimator, etc.

Ø Neural approaches:

Ø Mapping-based, Masking-based, Waveform modeling
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THESIS OUTLINE

• Conventional approaches for intelligibility boosting (Chapter 2)

Ø Most are based on signal processing:

Ø Knowledge-based modification, .e.g., formant enhancement, dynamic range compression

Ø Lombard-style conversion, i.e., convert to Lombard speech using voice conversion techniques)

Ø Metric-oriented optimization -> optimize a certain intelligibility metric

9



THESIS OUTLINE

• Thesis issues

Ø Primary goal:

Ø Enhance speech quality and intelligibility in speech communication

Ø -> Improve noise reduction and intelligibility boosting
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THESIS OUTLINE

• Thesis issues

Ø For noise reduction:

Ø Issue 1: Improving limited noise generalization capability of DNN-based noise reduction model (Chapter 3)
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Model’s generalization
to unseen noise
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• Thesis issues

Ø For noise reduction:
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Alleviate quality degradation



THESIS OUTLINE

• Thesis issues

Ø For noise reduction:

Ø Issue 1: Improving limited noise generalization capability of DNN-based noise reduction model (Chapter 3)

Ø Issue 2: Alleviating speech quality degradation caused by inverse STFT with noisy phase (Chapter 3)

Ø Issue 3: Improving noise reduction for device-degraded speech (Chapter 4)
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Multiple degradation factors



THESIS OUTLINE

• Thesis issues

Ø For intelligibility boosting:

Ø Issue 4: Improving the performance of intelligibility boosting by leveraging deep learning (Chapter 5)

Ø For joint noise reduction and intelligibility boosting:

Ø Issue 5: integrating noise reduction with intelligibility boosting for full-end speech enhancement (Chapter 6)
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THESIS OUTLINE

• Roadmap:
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Review

Joint framework
Issue 5

Noise reduction
Issues 1&2

Intelligibility boosting
Issue 4

Chapter 2

Chapter 3
Chapter 4

Chapter 5
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Issues 3

ConclusionChapter 7
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ISSUES 1&2

• Background

Ø Neural noise reduction learns to convert noisy speech features into clean ones

Ø Trained with pairs of clean speech and noisy speech

Ø Data-driven
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ISSUES 1&2

• Background

Ø Neural noise reduction learns to convert noisy speech features into clean ones

Ø Trained with pairs of clean speech and noisy speech

Ø Data-driven

• Evaluation metrics

• Objective quality: PESQ, CSIG, CBAK, COVL, etc.

• Objective intelligibility: SIIB, HASPI, ESTOI, etc.

• Subjective listening test: MOS score, preference test, etc.
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ISSUES 1&2

• Motivation
Ø Neural noise reduction learns to convert noisy speech features into clean ones

Ø As a data-driven model, we are concerned its noise generalizability — Robustness to unseen

noises (issue 1)

Ø Conventional approaches operate only on magnitude spectrogram but disregard phase.

While phase distortion degrades noise reduction performance (issue 2)
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ISSUES 1&2

• Motivation
Ø Neural noise reduction learns to convert noisy speech features into clean ones

Ø As a data-driven model, we are concerned its noise generalizability — Robustness to unseen

noises (issue 1)

Ø Conventional approaches operate only on magnitude spectrogram but disregard phase.

While phase distortion degrades noise reduction performance (issue 2)

• Solutions:
Ø Introduce neural noise temples to improve noise generalizability

Ø Investigate applying neural vocoder, instead of ISTFT, for waveform synthesis to alleviate phase

distortion 21



ISSUES 1&2: METHOD

l Key idea:

Ø Model noise dynamics and feed it into network training, known as Noise Aware Training (NAT) [1]

Ø Conventional NAT relied on separate module to get noise estimation, might be suboptimal

22[1] Xu, Y., Du, J., Dai, L.R. and Lee, C.H., 2014. Dynamic noise aware training for speech enhancement based on 
deep neural networks. In Fifteenth Annual Conference of the International Speech Communication Association.

Figure from [1]



ISSUES 1&2: METHOD

l Key idea:

Ø Model noise dynamics and feed it into network training, known as Noise Aware Training (NAT) [1]

Ø Conventional NAT relied on separate module to get noise estimation, might be suboptimal

Ø Propose trainable neural noise template (noise tokens)

23[1] Xu, Y., Du, J., Dai, L.R. and Lee, C.H., 2014. Dynamic noise aware training for speech enhancement based on 
deep neural networks. In Fifteenth Annual Conference of the International Speech Communication Association.

Figure from [1]



ISSUES 1&2: METHOD

l Neural noise templates —— Noise tokens:

Ø Inspired by Style token [2]; Generated noise embedding is in frame-level to capture noise dynamics

Ø Intuition: Learn noise latent -> Represent new noise into the combination of old templates by assigning

weights -> Improve generalization

24[2] Wang, Y., Stanton, D., Zhang, Y., Skerry-Ryan, R.J., Battenberg, E., Shor, J., Xiao, Y., Ren, F., Jia, Y. and Saurous, R.A., 2018. Style tokens: 
Unsupervised style modeling, control and transfer in end-to-end speech synthesis. arXiv preprint arXiv:1803.09017.



ISSUES 1&2: METHOD

l Neural noise templates —— Noise tokens:

Ø Noise tokens are jointly optimized with the whole system, and can be regarded as dictionaries (*analogy
to noise dictionaries in NMF-based approach)

Ø Unseen noises are factorized and then represented as the weighted sum of trained noise tokens through
attention module

Ø Unseen noise --> linear combination of trained templates (which are seen to the model)
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ISSUES 1&2: EXPERIMENT

l Experiment 1: Performance analysis with noise tokens

Ø Noise token module: 16 learnable tokens; Multi-head attention with 8 heads

Ø Data:

Ø 50-hour noisy speech with 21 training noise types

Ø Tested on 4 unseen noises; SNR={-2.5, 2.5, 7.5, 12.5, 17.5} dB

Ø Three DNN architectures:

Ø Standard 2-layer BLSTM

Ø CNN+BLSTM used in VoiceFilter [3]

Ø Gaussian-weighted Transformer used in T-GSA [4] (Simplified by reducing number of blocks)

26

[3] Q. Wang, H. Muckenhirn, K. Wilson, P. Sridhar, Z. Wu, J. Hershey, R. A. Saurous, R. J. Weiss, Y. Jia, and I. L. Moreno, “Voicefilter: Targeted 
voice separation by speaker-conditioned spectrogram masking,” arXiv preprint arXiv:1810.04826

[4] J. Kim, M. El-Khamy, and J. Lee, “Transformer with gaussian weighted self-attention for speech enhancement,” arXiv preprint 
arXiv:1910.06762, 2019.



ISSUES 1&2: EXPERIMENT

l Result 1: Performance analysis with noise tokens

Ø Three tested systems (all used ISTFT for synthesis):

Ø w/o noise embedding

Ø DNAT (Dynamic noise aware training): w/ noise embedding; Obtained by a separate noise estimation module using
a noise tracking algorithm

Ø NTs (Noise tokens): w/ noise embedding; Obtained by proposed noise token module
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ISSUES 1&2: EXPERIMENT

l Result 1: Performance analysis with noise tokens

Ø Three tested systems (all used ISTFT for synthesis)

Ø Noise token consistently improves the noise reduction performance across all three tested architectures under unseen

noise conditions
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ISSUES 1&2: EXPERIMENT

l Experiment 2: Impact of noise diversity

Ø Effect of learned noise tokens:

Ø We expect that learned tokens can model or capture noise patterns

Ø More noise types fed into training, learned tokens have better noise representation ability

Ø Data:

Ø Four noisy datasets, all have 50 hours duration

Ø Only differed in the number of noise types included

Ø The more types a dataset includes, the more diverse it is

Ø Generated {N7, N12, N16, N21}, each includes {7, 12, 16, 21} noise types

Ø N21 is the same as what we used in Experiment 1, and has the best noise diversity
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ISSUES 1&2: EXPERIMENT

l Result 2: Impact of noise diversity

Ø Both used ISTFT for waveform synthesis

Ø Noise tokens bring higher relative improvements on PESQ with increasing noise diversity

Ø Noise tokens can effectively exploit multiple noises due to the modelling ability of their trainable templates

30



ISSUES 1&2: EXPERIMENT

l Experiment 3: Vocoder-based waveform generation module

Ø Apply WaveRNN [5] vocoder to synthesize waveform

n Enhanced magnitude spectrogram is converted to 80-dim Mel-spectrogram via an additional NN to (1) further

suppress residual noises; and (2) as input for WaveRNN

n WaveRNN directly generates waveforms to avoid incorporating noisy phase

n WaveRNN is pre-trained as a speaker-independent model using VCTK corpus

31[5] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury,N. Casagrande, E. Lockhart, F. Stimberg, A. v. d. Oord,S. Dieleman, and K. 
Kavukcuoglu, “Efficient neural audio synthesis,” arXiv preprint arXiv:1802.08435, 2018.



ISSUES 1&2: EXPERIMENT

l Result 3: Objective evaluations for vocoder-based waveform generation module

Ø Vocoder-based generation is much worse than the traditional ISTFT, in terms of objective measures

Ø Why? --> Probable reason: PESQ and STOI are not designed to evaluate neural vocoders

Ø Let’s look into listening test results! 32

Use ISTFT to synthesize

Use WaveRNN to synthesize



ISSUES 1&2: EXPERIMENT

l Experiment 4: Listening tests

Ø Six evaluated systems

Ø Baseline: Standard BLSTM model; (Use ISTFT to generate waveform)

Ø NT-ISTFT: BLSTM model + Noise tokens; Use ISTFT to generate waveform

Ø NT-WG: BLSTM model + Noise tokens; Use WaveRNN to generate waveform -> expected to be the best

Ø WG: Directly apply Waveform generation module to raw noisy speech; Use WaveRNN

Ø Clean: Raw clean speech

Ø Noisy: Unprocessed noisy speech
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ISSUES 1&2: EXPERIMENT

l Experiment 4: Listening tests

Ø Six evaluated systems

Ø Baseline: Standard BLSTM model; (Use ISTFT to generate waveform)

Ø NT-ISTFT: BLSTM model + Noise tokens; Use ISTFT to generate waveform

Ø NT-WG: BLSTM model + Noise tokens; Use WaveRNN to generate waveform

Ø WG: Directly apply Waveform generation module to raw noisy speech; Use WaveRNN

Ø Clean: Raw clean speech

Ø Noisy: Unprocessed noisy speech

Ø Rated in three aspects (521 listeners participated)

Ø (1) speech quality; (2) noise suppression; and (3) overall performance
34



ISSUES 1&2: EXPERIMENT

l Result 4: Listening tests

Ø NT-ISTFT outperforms Baseline in all three scores

n Compared to NT-ISTFT, NT-WG shows higher 

performances, especially on the noise suppression 

score (significant)
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ISSUES 1&2: EXPERIMENT

l Result 4: Listening tests

Ø NT-ISTFT outperforms Baseline in all three scores

n Compared to NT-ISTFT, NT-WG shows higher 

performances, especially on the noise suppression 

score (significant)

n Surprisingly, WG module itself can even outperform 

NT-ISTFT

n However, we found there are limited but some very

bad-quality cases (mumbling) in vocoder-generated

systems.
36



ISSUES 1&2: SUMMARY

l Propose noise token model for issue 1

Ø To alleviate the noise mismatch problem of DNN-based noise reduction model

Ø Noise token is effective across different network architectures and brings higher performance growth 

with increasing noise diversity

l Propose waveform generation module for issue 2

Ø To synthesize the waveform using WaveRNN vocoder, instead of traditional ISTFT

Ø Subjective listening tests show that the residual noise can be significantly reduced by the waveform 

generation module
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ISSUE 3：MOTIVATION

• Transform device-degraded speech into high-quality ones

Ø In issues 1&2 (Chapter 3), only additive noise was considered

Ø General device-degraded speech features: background noise, room reverb, and bad

microphone response.

Ø These factors are jointly considered. We collectively refer to as the channel factor

Ø Enhance these recordings by simultaneously removing noise, reverb, and also applying pleasing

audio effect via a unified network

39

Degraded version
iPhone-bedroom:

Studio:



ISSUE 3：MOTIVATION

• Transform device-degraded speech into high-quality ones

Ø In issues 1&2 (Chapter 3), only additive noise was considered

Ø General device-degraded speech features: background noise, room reverb, and bad

microphone response.

Ø These factors are jointly considered. We collectively refer to as the channel factor

Ø Enhance these recordings by simultaneously removing noise, reverb, and also applying pleasing

audio effect via a unified network

• Explore TTS techniques on noise reduction task

Ø Regard this task as a style transfer task, from low quality style to high quality

Ø Apply neural waveform model to synthesize speech, instead of using ISTFT
40



ISSUE 3：METHOD

• Overview of system diagram

Ø Encoder

Ø Filter out the channel characteristics from the input audio

Ø Channel Modeling

Ø Disentangle the channel factor from a reference audio

Ø Decoder

Ø Predict the target-style Mel spectrogram, conditioned on

extracted channel factor

41

Ø WaveRNN vocoder

Ø Generate target-style waveform (professional high-quality recording)



ISSUE 3：METHOD

• Component details

Ø Encoder

Ø Filter out the channel characteristics from the input audio

Ø Consists of 2-D CNNs+BLSTM

42

Ø Adversarial training

Ø Add channel classifier #1 to encourage encoder to 

produce channel-invariant features



ISSUE 3：METHOD

• Component details

Ø Channel modeling

Ø Disentangle the channel factor from a reference audio

43

Ø Additional classifiers

Ø Channel classifier #2 used to encourage extracted channel

factor to be more informative about channel information

Ø Speaker classifier used for adversarial training, to filter out 

the remained speaker information from the channel factor



ISSUE 3：METHOD

• Component details

Ø Channel modeling

Ø Shares a similar network structure with “Noise Token”

Ø Design an interpretable and controllable channel modeling module. (e.g.,

Token A might represent reverb level, Token B represents noise level, etc.)
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ISSUE 3：METHOD

• Component details

45

Ø Pros

Ø Enables module to deal with the unseen channel condition 

and unlabeled reference audio

Ø Controllable style transfer by adjusting weights of learned

tokens

Ø Cons

Ø Need an additional provided reference audio

Ø Bad performance if channel factor not accurate



ISSUE 3：METHOD

• Component details

Ø Decoder

Ø Predict the target-style Mel spectrogram, conditioned on

extracted channel factor

Ø Similar structure with Tacotron2-Decoder, including Prenet,

Postnet, and auto-regressive generation

Ø WaveRNN vocoder

Ø A pre-trained universal WaveRNN vocoder

46



ISSUES 3: EXPERIMENTS

l Dataset

Ø DAPS (device and produced speech) dataset

Ø It provides aligned recordings of high-quality speech and a number of versions of low-quality speech,

recorded in noisy environment with cheap device.

Ø Two unseen speakers (1 male + 1 female), and three unseen channels are used for testing: (1)

ipad_livingroom, (2) ipadflat_office, and (3) iphone_bedroom

47



ISSUES 3: EXPERIMENTS

l Ablation Study

Ø ED: contains only encoder and decoder

Ø ED+CM: contains encoder, decoder, and channel modelling

Ø FULL (ED+CM+Classifiers): contains encoder, decoder, channel

modelling, and 3 auxiliary classifiers

Ø Linear+ISTFT: Same settings with FULL model, except the decoder 

output was linear spectrogram. Use ISTFT to synthesize waveform

48



ISSUES 3: EXPERIMENTS

l Other compared methods

Ø Raw audio: lower bound

Ø Studio audio: higher bound

Ø WPE: signal-processing method for speech dereverberation

Ø WPE+L: signal-processing method for speech dereverberation + LogMMSE for denoising

Ø WaveNet [1]: Denoising-WaveNet model

49

[1] Jiaqi Su, Adam Finkelstein, and Zeyu Jin, “Perceptually-motivated environment-specific speech enhancement,” in ICASSP 2019-2019 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 7015–7019



ISSUES 3: EXPERIMENTS

l Objective results

50

Ø FULL consistently improves its two simplified versions, ED and 

ED+CM, and other compared methods (WPE, WPE+L, and

WaveNet)

Ø FULL system is worse than Linear-ISTFT in terms of CBAK and 

COVL

Ø Objective metrics usually give lower scores to vocoder-

generated waveform



ISSUES 3: EXPERIMENTS

l Subjective results

51

Ø Conducted crowdsourced listening tests, 165 individuals

rated quality for given samples with 5-point MOS score

Ø FULL gives the best performance

Ø FULL > Linear-ISTFT, means WaveRNN improves the 

quality of the synthetic waveform, compared with ISTFT

Ø Audio samples: https://nii-yamagishilab.github.io/hyli666-demos/evr-slt2021/



ISSUES 3: SUMMARY

• Apply style transfer approach into noise reduction task

Ø For device-degraded speech

Ø Jointly consider denoising, dereverberation, and applying pleasing audio effect to low-quality recordings

Ø Mel+WaveRNN waveform synthesis module outperforms Linear+ISTFT in subjective evaluations

Ø Proposed system outperforms a time-domain model (WaveNet) and several signal-processing baselines

• However…

Ø Still require expensive parallel recordings for training -> Expand to non-parallel style transfer?

52
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ISSUE 4: BACKGROUND

• Speech intelligibility degrades in noisy environment

Ø Cause stressful listening; or even non-understanding for listener

Ø Unlike noise reduction, we cannot suppress noise since it is physically present

• Solution

Ø Can we simply increase voice volume? -> Yes, but loud voice causes uncomfortable listening

Ø We seek methods to modify speech signal but without changing its energy (i.e., volume)

Ø Applications: mobile telephony, public-address announcement, etc.

54



ISSUE 4: METHOD

• How to modify speech?

Ø Reallocate the speech energy on time-frequency domain in such a way as to boost 

the acoustic cues that are perceptually crucial

Ø But.. How do we know what kind of acoustic cue is crucial for human perception?

55



ISSUE 4: METHOD

• How to modify speech?

Ø Reallocate the speech energy on time-frequency domain in such a way as to boost 

the acoustic cues that are perceptually crucial

Ø But.. How do we know what kind of acoustic cue is crucial for human perception?

• Rely on objective speech intelligibility metrics

Ø Many objective metrics have been proposed to predict the intelligibility of speech

Ø Specifically, they require a clean speech signal as the reference to predict intelligibility

for distorted (speech-in-noise) speech

Ø Our goal is thus formulated as: Modifying speech to maximize its objective

intelligibility scores 56



ISSUE 4: METHOD

• Difficulties

Ø Intelligibility metrics are usually quite complex and mathematically intractable

Ø Hard to solve such an optimization problem in an efficient manner

57



ISSUE 4: METHOD

• Difficulties

Ø Intelligibility metrics are usually quite complex and mathematically intractable

Ø Hard to solve such an optimization problem in an efficient manner

• Solution ->Try GAN

Ø We introduce GAN model into our system

Ø Replace intractable objective metrics with differentiable neural network

Ø Jointly optimize three intelligibility metrics (SIIB, HASPI, and ESTOI) for improved intelligibility

Ø Also optimize two quality metrics (PESQ and ViSQOL) for improved speech quality

Ø
58



ISSUE 4: METHOD

l System overview

Ø Generator (G) enhances the speech signal as the

intelligibility enhancement module

Ø Discriminator (D) learns to predict the intelligibility

scores of modified speech

Ø G is then trained with the guidance of D

59



ISSUE 4: METHOD

l Discriminator

Ø Used to approximate intractable metrics

Ø Q function represents metrics to be modelled, i.e., SIIB,

HASPI, and ESTOI

Ø D tries to accurately predict the score of the modified

speech by minimizing MSE between predicted and true

scores

Ø Optimize true intelligibility metrics (Q function) = Optimize

output scores of D

Ø This is possible since D is differentiable now
60



ISSUE 4: METHOD

l Generator

Ø Used to modify natural speech as intelligibility

enhancement module

Ø D parameters are fixed, and G is trained to reach the

intelligibility scores as high as possible

Ø MSE between predicted and target maximum scores is set

as G loss

61



ISSUE 4: METHOD

• Model architecture

• Generator:

Ø 6 blocks of 1-D causal CNNs

• Discriminators:

Ø 5 blocks of 2-D CNNs

Ø Outputs are predicted intelligibility or

quality scores (range from 0 to 1)

62



ISSUE 4: EXPERIMENTS

• Setup

Ø We used 1200 Harvard sentences for training; 120 for test

Ø Each test sentence is mixed with 2 types of unseen noise at 3 SNRs, under 3 reverb

conditions

Ø Intelligibility metrics: SIIB, HASPI, ESTOI

Ø Quality metrics: PESQ and ViSQOL

63



ISSUE 4: EXPERIMENTS

• 5 compared systems:

Ø Unmodified speech: Plain speech without any modification

Ø SSDRC [6]: State-of-the-art system, giving best performance as reported in previous study

Ø iMetricGAN [7]: Our previously proposed model; Developed in 2020

Ø Proposed (S+H+E): New developed, optimizing three intelligibility metrics

Ø Proposed (All): New developed, jointly optimizing three intelligibility metrics and two quality metrics

64

[6] Zorila, Tudor-Catalin, Varvara Kandia, and Yannis Stylianou. "Speech-in-noise intelligibility improvement based on spectral shaping 

and dynamic range compression." Thirteenth Annual Conference of the International Speech Communication Association. 2012.
[7] Li, Haoyu, et al. "iMetricGAN: Intelligibility enhancement for speech-in-noise using generative adversarial network-based metric

learning." arXiv preprint arXiv:2004.00932 (2020).



ISSUE 4: EXPERIMENTS

• Subjective evaluations

Ø We conducted listening test, in which 90 native English speakers were asked to listen and

type in what they heard

Ø Under 2 noises, 3 reverberations and 3 SNR level conditions

Ø Totally 18 different listening conditions investigated

Ø Keyword Accuracy Rate as performance measure for intelligibility

Ø How many correct content words (in percentage) listener can hear
65



ISSUE 4: EXPERIMENTS

• Under Cafeteria noise

66

• SNR: the level of noise

• T60: the level of reverberation

• Condition with low SNR and high

T60 is more challenging



ISSUE 4: EXPERIMENTS

• Under Cafeteria noise

67

Ø Proposed (All) performs best

Ø Outperform SSDRC

Ø Accuracy rate greatly improved:

From 49.5% (unmodified) up to

85.2%

Demo: SNR=-5 dB;T60=0.30 s

• Clean speech in noise

• Modified speech in noise

• Text: "We don't like to admit our 
small faults"



ISSUE 4: EXPERIMENTS

• Under Airport Announcement noise

68

Demo: SNR=-5 dB;T60=0.92 s

• Clean speech in noise

• Modified speech in noise

• Text: "The bombs left most of the 
town in ruins"



ISSUE 4: EXPERIMENTS

• Objective results:

Ø Under Cafeteria noise

69



ISSUE 4: EXPERIMENTS

70

Ø Large intelligibility improvements in all tested noise and reverberations

Ø Proposed (S+H+E) and Proposed (All) significantly outperform SSDRC baseline

• Objective results

Ø Under Airport Announcement noise



ISSUE 4: SUMMARY

• The proposed system greatly improves the intelligibility of speech under various

listening conditions

• Intelligibility boosting is achieved by optimizing multiple intelligibility and quality

metrics through GAN model

• GAN helps avoid intractable optimization problem

• Our system outperforms the state-of-the-art methods

• More demos

Ø https://nii-yamagishilab.github.io/hyli666-demos/intelligibility/index.html
71
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ISSUE 5: MOTIVATION

• Background

Ø Noise exists in both far-end speaker and near-end listener environments

Ø Noise reduction (NR) and intelligibility boosting (IB) should be accordingly carried out

• Solution

Ø Disjoint pipeline processing: sequentially apply NR and IB?

Ø Jointly optimize NR and IB within a unified framework?

73



ISSUE 5: PROBLEM FORMULATION

• Signal model

• Goal

Ø Improve the listening experience for listeners, i.e., the intelligibility of o(n) and quality of y(n), by 

designing effective NR and IB modules. 
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ISSUE 5: METHOD

• Three main modules

Ø 1. NR module: suppress noise

Ø 2. IB module: further improve the intelligibility of denoised speech

Ø 3. Noise token module: extract noise embedding and informs other modules of far-end environmental 

information 

75



ISSUE 5: METHOD

• Noise reduction module

Ø Adopt Convolutional recurrent network (CRN)

Ø CNN-Encoder – LSTM – CNN-Decoder

Ø Input: Real and Imag spectrogram (2 channels) of noisy speech

Ø Real and Imag Decoders output real and imag spectrogram, respectively

76



ISSUE 5: METHOD

• Intelligibility boosting module

Ø GAN model; Similar to that in Chapter 5

Ø Consists of 1D CNN blocks

Ø Input: Spectrogram magnitude; Output: Amplification factors redistributing speech energy

Ø Optimize 6 metrics:

Ø SIIB, HASPI, and ESTOI as intelligibility metrics;

Ø PESQ, ViSQOL, and HASQI as quality metrics

Ø Discriminators are composed of 2D CNN
77



ISSUE 5: METHOD

• Noise token module

Ø Encode the far-end environment information and generate noise embedding

Ø We believe both NR and IB modules can benefit from additional noise information

Ø For example, by exploiting far-end noise knowledge, IB module may avoid to amplify the time-
frequency regions containing much residual noise. 

Ø Network design is similar to our previous “noise tokens” work

78



ISSUE 5: METHOD

• Training objective

Ø 1. Intelligibility loss: calculated by intelligibility discriminator

Ø 2. Quality loss: by quality discriminator

Ø 3. Speech denoising loss:  Scale-Invariant SNR (SI-SNR) calculated by comparing denoised speech with 

clean reference

79

TEMPLATE 3

(a) Noise reduction module (b) Listening enhancement module (c) Noise token module

Fig. 3. Illustration of the three major modules. CONV and FC denote convolutional and fully-connected layers, respectively.

speech, respectively. Each discriminator consists of five 2D
convolutional layers with the following kernel size and output
channels: [(1, 1), 8], [(5, 5), 16], [(7, 7), 32], [(9, 9), 48],
and [(11, 11), 64], each with PReLU activation. A 2D global
average pooling is added to the last CONV layer to produce a
fixed 64-dimensional vector, followed by an FC layer with 64
PReLU nodes. The last sigmoid activation predicts the scores
of modelled target metrics. For example, the output nodes of
Dint are set to 3, corresponding to three intelligibility metrics,
i.e., SIIB, HASPI, and ESTOI.

C. Noise Token

We also insert noise token module [22] into the joint model.
Noise tokens are a set of neural noise templates used to
encode the far-end environment information and generate the
corresponding noise embedding. Such embedding is regarded
as additional noise knowledge and fed into both NR and
LE modules. We have demonstrated in [22] that noise token
embedding can improve the performance of NR module. We
expect that they can also benefit LE module. For example,
since the denosied speech is not perfectly clean, LE module
has to avoid to amplify the time-frequency bins containing
much residual noise by exploiting far-end noise knowledge.

Fig. 3(c) shows the detailed structure of noise token module.
This module takes the noisy spectrogram magnitude as input.
It is composed of six 2D convolutional layers each with 3⇥3
kernel and 1⇥2 stride. The channels are set to 32, 32, 64, 64,
128, and 128, respectively. A uni-directional LSTM layer with
256 nodes is followed by the last CONV block, resulting in
256-dimensional encoded representation. Next, in multi-head
attention model [23], this representation serves as the query

and 16 trainable 256-dimensional noise tokens serve as the key

and vector. We set the number of attention heads to 8. Finally,
the noise token embedding can be generated as the weighted
sum of the noise tokens.

D. Training Objective

The training objective is composed of three terms:

L = Lint + ↵ ⇤ Lqua + � ⇤ Lsisnr, (3)

where Lint is intelligibility loss calculated by intelligibil-
ity discriminator, Lqua is quality loss calculated by quality
discriminator, and Lsisnr is speech denoising loss. ↵ and
� denote the weight parameters, respectively. To be more
specific, Lsisnr is scale-invariant signal-to-noise ratio (SI-
SNR) [21], which is calculated by comparing the denoised

speech with the clean reference speech. Intelligibility loss
Lint is defined as the mean square error between predicted
intelligibility scores and the maximum scores of metrics:

Lint = ||Dint(y)� tint||2 (4)

where y is the enhanced speech output by LE module, Dint(y)
is the predicted scores output by intelligibility discriminator,
and tint is the maximum scores of the selected intelligibility
metrics, respectively. With this loss, LE module has to reach
intelligibility scores as high as possible. Similarly we can also
define the quality loss Lqua. We jointly optimize the whole
model (including noise token, NR, and LE modules) using
the loss function of Eq. 3.

IV. EXPERIMENTS

A. Data Preparation

We used two public corpora of Harvard sentences [24] (one
spoken by male [25] and one by female [26]) in the exper-
iments. We split the whole 720 Harvard sentences into 600,
60, and 60 for training, validation, and test data, respectively.

For training and validation, eight noise types were used
in both far-end and near-end environments: station, babble,
restaurant, speech-shaped noise, traffic, park, wind, and fac-
tory. Far-end SNR levels were set to 4, 8, and 12 dB; near-
end SNR levels were set to -11, -7, and -3 dB. By randomly
combining these settings, we generated 28,800 and 2,880
utterances for training and validation, respectively.

For test set, the far-end noise type is cafeteria at three SNRs,
i.e., 6, 10, 14 dB; near-end noise type is airport announcement
at three SNRs, i.e., -9, -5, -1 dB. To summarize, there were
1,080 (60 sentences ⇥ 2 genders ⇥ 3 far-end SNRs ⇥ 3 near-
end SNRs) utterances in the test set. It is worth noting that
all the sentences, noise types, and SNR levels of the test set
were unseen during model training.

B. Implementation Details

All signals were down-sampled to 16 kHz in the exper-
iments. We used the improved minima controlled recursive
averaging algorithm (IMCRA) [27] to estimate power spectral
density of the near-end noise. During training, we applied
parametric logistic function to normalize all metric scores to
the range of [0, 1], i.e., the same range with sigmoid activation,
and set the corresponding target maximum scores (e.g., tint in
Eq. 4) to 1. We used Adam optimizer [28] for training, with
initial learning rates of 0.0002 for the three main modules
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ISSUE 5: EXPERIMENTS

• Setup

Ø We used 1200 Harvard sentences for training; 120 for test

Ø Far-end noise type in test set is Cafeteria noise at {6, 10, 14} dB

Ø Near-end noise type in test set is Airport Announcement noise at {-9, -5, -1} dB

Ø Intelligibility metrics: SIIB, HASPI, ESTOI

Ø Quality metrics: PESQ, ViSQOL, and HASQI
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ISSUE 5: EXPERIMENTS

• 7 compared systems:

Ø Noisy: The far-end noisy speech is played under the near end noise without any modification

Ø Noisy+NR: Processed by only NR module

Ø Noisy+IB: Processed by only IB module
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ISSUE 5: EXPERIMENTS

• 7 compared systems:

Ø Noisy: The far-end noisy speech is played under the near end noise without any modification

Ø Noisy+NR: Processed by only NR module

Ø Noisy+IB: Processed by only IB module

Ø DSPPipeline: Processed by the signal-processing-based disjoint pipeline, consisting of Wiener filter (for NR) and

SSDRC (for IB)

Ø NeuralPipeline: Processed by the neural-network-based disjoint pipeline, consisting of CRN-based NR and

GAN-based IB

Ø Joint: Processed by the partial joint model (without noise token); NR and IB are jointly optimized

Ø Joint+NT: Processed by the full joint model (with noise token ); NR and IB are jointly optimized
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ISSUE 5: EXPERIMENTS

• Intelligibility scores

Ø Applying only NR or IB does not increase the intelligibility

Ø Joint methods consistently outperform the pipeline

Ø Benefiting from noise token, Joint+NT achieves the overall best performance
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ISSUE 5: EXPERIMENTS

• Quality scores

Ø Intelligibility-enhancing modifications degrade the speech quality at the cost of 

increasing intelligibility

Ø Joint methods preserve speech quality well compared to pipeline
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ISSUE 5: EXPERIMENTS

• Subjective preference test

Ø 20 native speakers were recruited

Ø Listen to a pair of samples and select the one sounds more clear or better

Ø Still, proposed Joint+NT method performs best
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ISSUE 5: SUMMARY

• We proposed a joint framework integrating noise reduction with intelligibility

boosting to address the full-end SE task

• Under this joint framework, these two modules can be jointly optimized

• It achieves significant intelligibility gain while preserving speech quality well
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CONCLUSION

• We improved noise reduction model:

Ø Improving its noise generalization

Ø Using WaveRNN vocoder to synthesize waveform to alleviate phase distortion

Ø Considering and enhancing general device degradation

• We proposed a novel neural intelligibility boosting model:

Ø Introducing GAN into intelligibility boosting model

Ø It outperforms state-of-the-art baseline

• We integrated noise reduction with intelligibility boosting:

Ø Addressing full-end speech enhancement task where noises exist in both speaker and listener sides

Ø It outperforms disjoint pipeline methods
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FUTURE DIRECTION

• In Chapter 3, try non-autoregressive vocoder such as HiFi-GAN

• In Chapter 4, try mutual information (MI) minimization to filter out channel characteristic

• In Chapter 5, try new reverberation modeling method

• In Chapter 6, try end-to-end method that directly maps noisy speech into clean intelligibility-boosted speech

• Extend single-channel approach to the use of microphone array
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CORRELATIONS OF DISCRIMINATOR

• Correlations between the predicted metric scores and true labels in
Chapter 5

97


