

Analyzing Language-Independent Speaker Anonymization Framework under Unseen Conditions

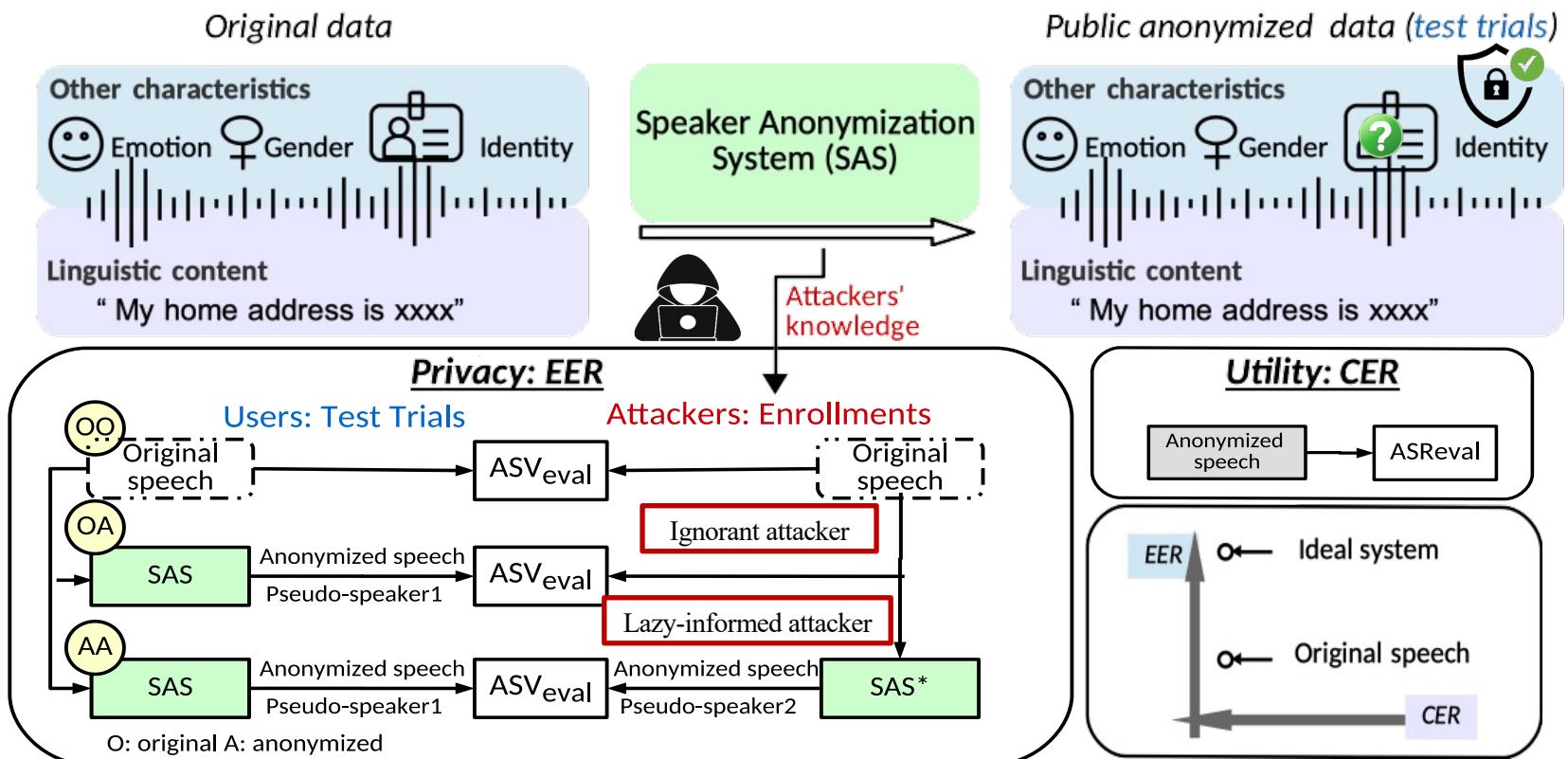
Xiaoxiao Miao¹, Xin Wang¹, Erica Cooper¹,
Junichi Yamagishi¹, Natalia Tomashenko²

¹ National Institute of Informatics, Japan

² LIA, University of Avignon, France

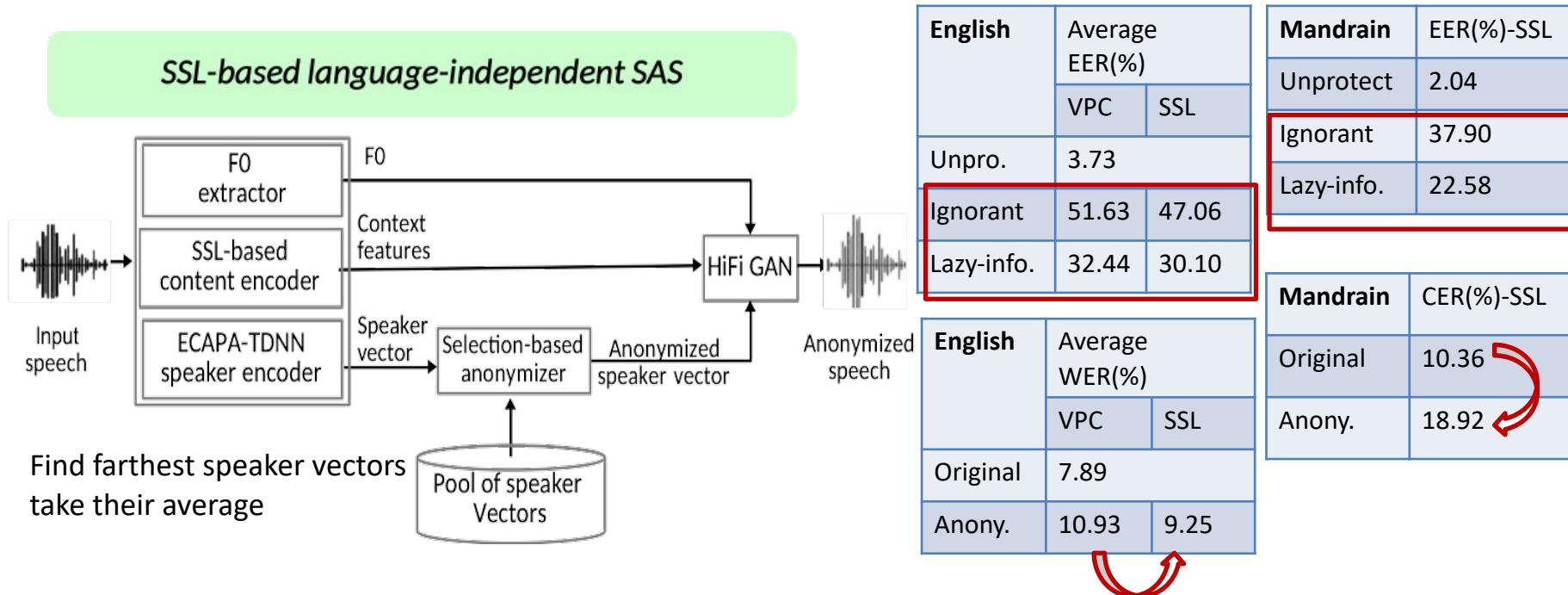
Introduction of speaker anonymization

- Definition^[1] from VoicePrivacy challenge (VPC) 2020
 - Suppress the speaker's identity
 - Preserve other information, allow the downstream tasks



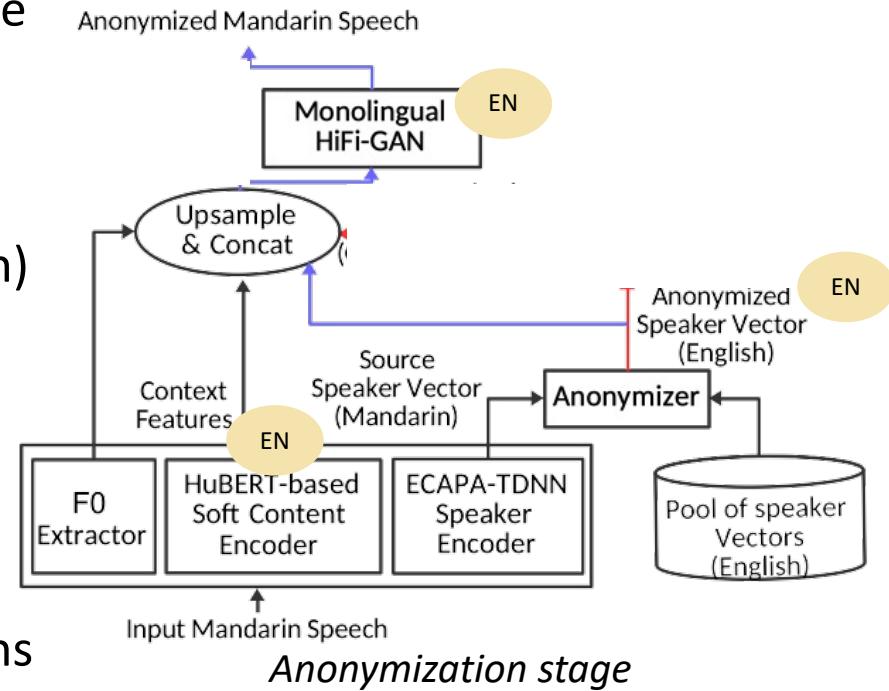
SSL-based language independent SAS

- Previously proposed SSL-based SAS^[2]:
 - Does not require other language-specific resources, allowing the system to anonymize speech data from any language
 - For English: comparable EER and better WER than VPC baselines
 - For Mandarin: acceptable EER while degraded CER



SSL-based SAS performance bottleneck

- What is the performance bottleneck of SSL-based SAS under unseen conditions?
 - Monolingual content encoder -> multilingual SSL-based soft content X
 - Monolingual HiFi-GAN -> multilingual HiFi-GAN ✓
 - To achieve a robust vocoder, the training dataset has to cover diverse speakers and languages^[3]
- Anonymized speaker vector (English) -> map to multilingual or Mandarin space ✓
 - Speaker vectors contain speaker-unrelated information from the source domain, e.g., channel conditions and lexical contents^[4,5]



[3] J. Lorenzo-Trueba, et al, "Towards Achieving Robust Universal Neural Vocoding," Interspeech 2019

[4] D. Raj, et al, "Probing the information encoded in x-vectors," ASRU 2019

[5] J. Williams and S. King, "Disentangling style factors from speaker representations." Interspeech 2019

Experiment details

- Settings:
 - Test set sampled from AISHELL-3^[6]: 10120 enrollment-test trials
 - ASVeal: F-ECAPA trained on CN-Celeb-1&2^[7]
 - ASReval: publicly available transformer trained on AISHELL-1^[8]
- Vocoder: Monolingual HiFi-GAN vs. Multilingual HiFi-GAN

Model	Dataset
Mono-hifigan	LibriTTS train-clean-100 ^[9]
Multi-hifigan	German ^[10] & Italian ^[10] & Spanish ^[10] & LibriTTS train-clean-100

- Anonymized speaker vector: General and Mandarin CORAL

Types	Dataset
General CORAL	German & Italian & Spanish
Mandarin CORAL	AISHELL-3-test-left

[6] Yao Shi, Hui Bu, Xin Xu, Shaoji Zhang, and Ming Li, “AISHELL-3: A Multi-Speaker Mandarin TTS Corpus,” INTERSPEECH, 2021

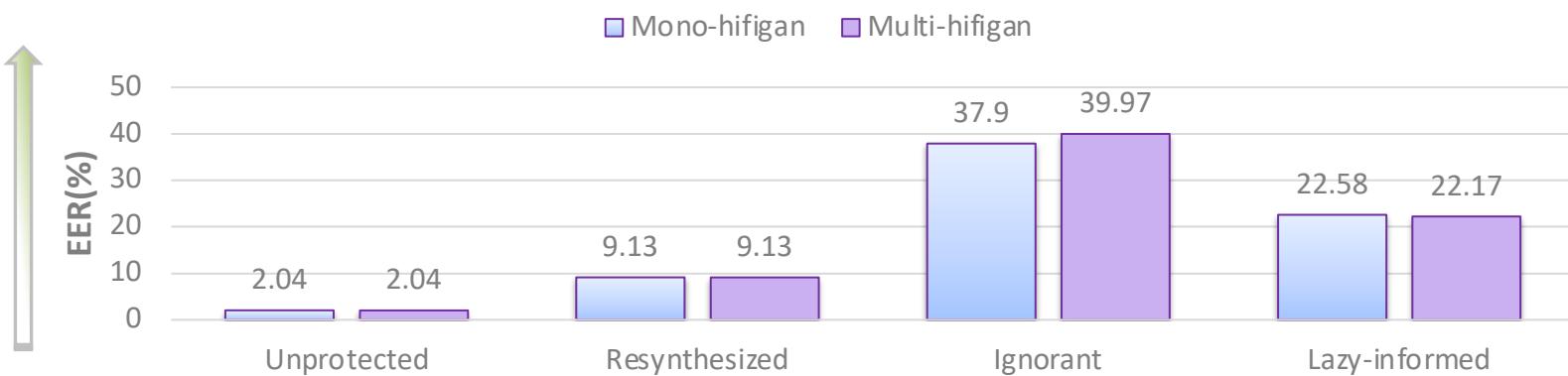
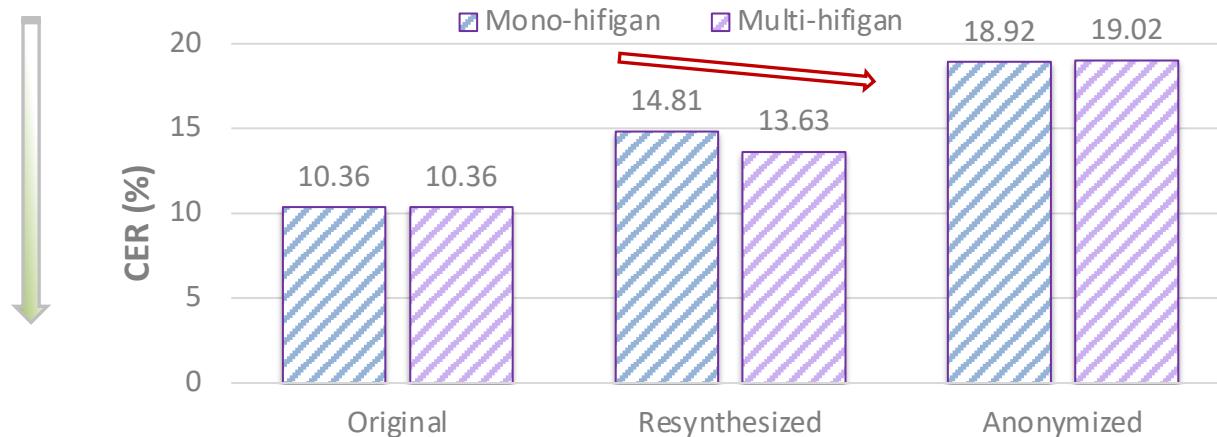
[7] Lantian Li, et al., “CN-Celeb: multi-genre speaker recognition,” Speech Communication, 2022

[8] Hui Bu, et al., “Aishell-1: An open-source Mandarin speech corpus and a speech recognition baseline,” O-COCOSDA 2017

[9] H. Zen, et al, “LibriTTS: A corpus derived from LibriSpeech for text-to-speech,” arXiv preprint arXiv:1904.02882, 2019

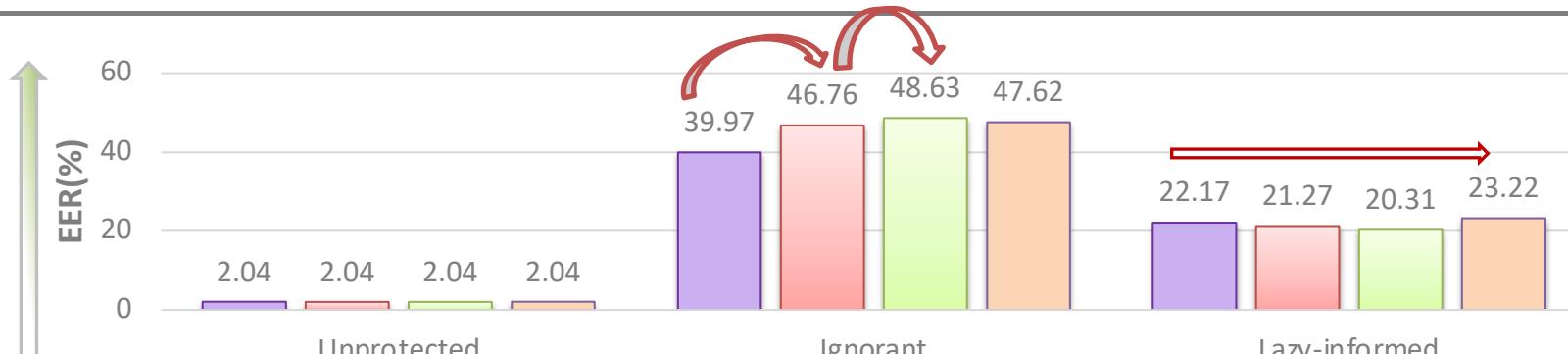
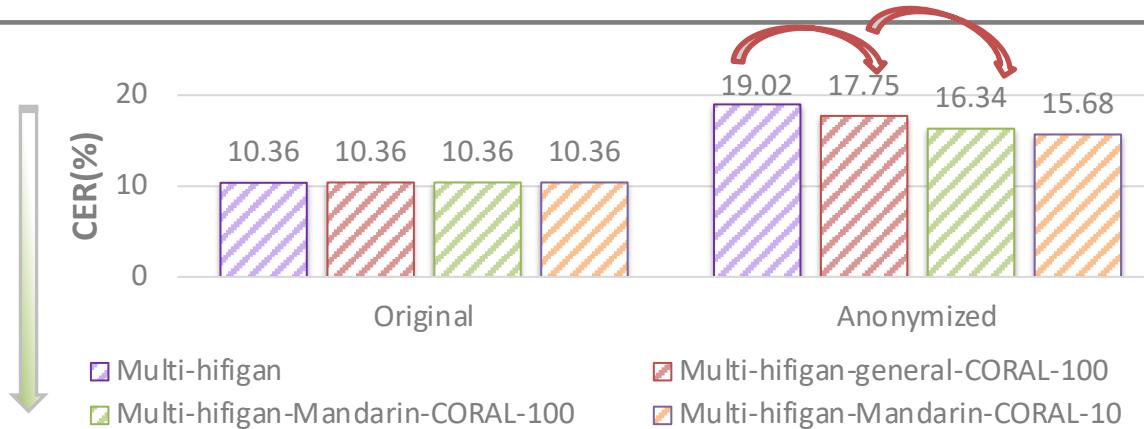
[10] V. Pratan, et al, “MLS: A Large-Scale Multilingual Dataset for Speech Research,” Interspeech 2020

Mono-HiFiGAN vs. Multi-HiFiGAN



- The multilingual HiFi-GAN:
 - Keep the **similar** protection ability of the speaker identity
 - Better preservation of the **speech contents**

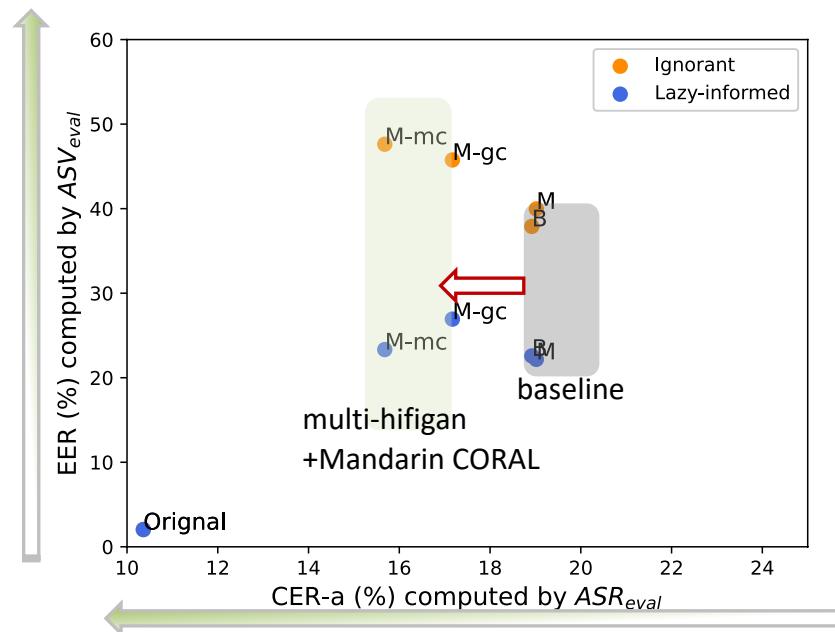
Coral trasformation



- CORAL achieves **higher EER** on Ignorant condition and **lower CER**
- Mandarin CORAL performed better on CERs than the general CORAL
- The mismatch on the anonymized speaker vectors severely affect the SAS

Conclusions

- The performance bottleneck of SSL-based SAS
 - HiFi-GAN: increasing the language diversity for the HiFi-GAN benefits the preservation of speech contents
 - Anonymized speaker vector: the mismatch on the anonymized speaker vectors severely affect the SAS.
 - The SAS using multilingual HiFi-GAN and CORAL strategy improve both privacy and utility



B: mono-hifigan (SSL-based baseline)
M: multi-hifigan
M-gc: multi-hifigan + general CORAL
M-mc: multi-hifigan + Mandarin CORAL

Audio samples and source code are available at
<https://github.com/niit-yamagishilab/SSL-SAS>

Thanks for listening
Q&A