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Introduction of speaker anonymization

* Definition!!! from VoicePrivacy challenge (VPC) 2020

Other characteristics

Q:

Suppress the speaker’s identity

Preserve other information, allow the downstream tasks

Original data
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Public anonymized data (test triqls)
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SSL-based language independent SAS

* Previously proposed SSL-based SAS!2!:

Does not require other language-specific resources, allowing the
system to anonymize speech data from any language

For English: comparable EER and better WER than VPC baselines
For Mandarin: acceptable EER while degraded CER

SSL-based language-independent SAS
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SSL-based SAS performance bottleneck

NI

What is the performance bottleneck of SSL-based SAS under
unseen conditions?

= Monolingual content encoder -> multilingual SSL-based soft content X
= Monolingual HiFi-GAN -> multilingual HiFi-GAN v/

* To achieve a robust vocoder, the  anonymized Mandarin speech
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Experiment details

* Settings:
= Test set sampled from AISHELL-3!¢:: 10120 enrollment-test trials
= ASVeval: F-ECAPA trained on CN-Celeb-1&2!"!
= ASReval: publicly available transformer trained on AISHELL-1!8!

* Vocoder: Monolingual HiFi-GAN vs. Multilingual HiFi-GAN

Model Dataset

Mono-hifigan LibriTTS train-clean-100F!

Multi-hifigan German(10 & Italian[’% & Spanish!10l
& LibriTTS train-clean-100

* Anonymized speaker vector: General and Mandarin CORAL

Types Dataset
General CORAL German & Italian & Spanish
Mandarin CORAL | AISHELL-3-test-left
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Mono-HiFiGAN vs. Multi-HiFiGAN
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* The multilingual HiFi-GAN:

= Keep the similar protection ability of the speaker identity
= Better preservation of the speech contents
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Coral trasformation
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CORAL achieves higher EER on Ignorant condition and lower CER
Mandarin CORAL performed better on CERs than the general CORAL
The mismatch on the anonymized speaker vectors severely affect the SAS



Conclusions

 The performance bottleneck of SSL-based SAS

* HIiFi-GAN: increasing the language diversity for the HiFi-GAN benefits the
preservation of speech contents

* Anonymized speaker vector: the mismatch on the anonymized speaker vectors
severely affect the SAS.

* The SAS using multilingual HiFi-GAN and CORAL strategy improve both
privacy and utility
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Audio samples and source code are available at
https://github.com/nii-yamagishilab/SSL-SAS

Thanks for listening
Q&A
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https://github.com/nii-yamagishilab/SSL-SAS

