

# The VoiceMOS Challenge 2022

Wen-Chin Huang<sup>1</sup>, Erica Cooper<sup>2</sup>, Yu Tsao<sup>3</sup>, Hsin-Min Wang<sup>3</sup>, Tomoki Toda<sup>1</sup>, Junichi Yamagishi<sup>2</sup>

<sup>1</sup>Nagoya University, Japan

<sup>2</sup>National Institute of Informatics, Japan

<sup>3</sup>Academia Sinica, Taiwan







#### Outline

- I. Introduction
- II. Challenge description
  - A. Tracks and datasets
  - B. Rules and timeline
  - C. Evaluation metrics
  - D. Baseline systems

#### III. Challenge results

- A. Participants demographics
- B. Results, analysis and discussion
  - 1. Comparison of baseline systems
  - 2. Analysis of top systems

#### IV. Conclusions

Introduction

## Speech quality assessment

Important to evaluate speech synthesis systems, ex. text-to-speech (TTS), voice conversion (VC).



Drawbacks:

- **1. Expensive**: Costs too much time and money.
- **2. Context-dependent**: numbers cannot be meaningfully compared across different listening tests.

-W\\\~

## Speech quality assessment

Important to evaluate speech synthesis systems, ex. text-to-speech (TTS), voice conversion (VC).



\* Non-intrusive SPQA: no ground-truth reference is available for comparison

## Goals of the VoiceMOS challenge



Encourage research in automatic data-driven MOS prediction



Compare different approaches using shared datasets and evaluation



Focus on the challenging case of generalizing to a separate listening test



Promote discussion about the future of this research field

# Challenge description

- I. Tracks and datasets
- II. Rules and timeline
- III. Evaluation metrics
- IV. Baseline systems

## Challenge platform: CodaLab

Open-source web-based platform for reproducible machine learning research.





#### Tracks and dataset: Main track

https://zenodo.org/record/6572573#.Yphw5y8RprQ

#### The BVCC Dataset

- Samples from 187 different systems all rated together in one listening test
  - Past Blizzard Challenges (text-to-speech synthesis) since 2008
  - Past Voice Conversion Challenges (voice conversion) since 2016
  - ESPnet-TTS (implementations of modern TTS systems), 2020
- 8 ratings per audio sample
- Listener demographics: gender, age range, and hearing impairment
- Test set contains some **unseen systems, unseen listeners, and unseen speakers** and is balanced to match the distribution of scores in the training set





#### Tracks and dataset: OOD track

#### Listening test data from the Blizzard Challenge 2019

- "Out-of-domain" (OOD): Data from a completely separate listening test
- Chinese-language synthesis from systems submitted to the 2019 Blizzard Challenge
- Test set has some unseen systems and unseen listeners

|                   | 10% | 40%                            | 10%     | 40%      |  |
|-------------------|-----|--------------------------------|---------|----------|--|
| Labeled train set |     | set <b>Unlabeled</b> train set | Dev set | Test set |  |

- Designed to reflect a real-world setting where a small amount of labeled data is available
- Study generalization ability to a different listening test context
- Encourage unsupervised and semi-supervised approaches using unlabeled data

## **Dataset summary**

Table 1: Summary of the main track and out-of-domain (OOD) track datasets.

| Track | Lang | # Samples                  |       |       | # ratings  |
|-------|------|----------------------------|-------|-------|------------|
| Hack  |      | Train                      | Dev   | Test  | per sample |
| Main  | Eng  | 4,974                      | 1,066 | 1,066 | 8          |
| OOD   | Chi  | Label: 136<br>Unlabel: 540 | 136   | 540   | 10-17      |

#### Rules and timeline



#### **Evaluation** metrics

#### System-level and Utterance-level

- Mean Squared Error (MSE): difference between predicted and actual MOS
- Linear Correlation Coefficient (LCC): a basic correlation measure
- Spearman Rank Correlation Coefficient (SRCC): non-parametric; measures ranking order
- Kendall Tau Rank Correlation (KTAU): more robust to errors

```
import numpy as np
import scipy.stats

# `true_mean_scores` and `predict_mean_scores` are both 1-d numpy arrays.

MSE = np.mean((true_mean_scores - predict_mean_scores)**2)
LCC = np.corrcoef(true_mean_scores, predict_mean_scores)[0][1]
SRCC = scipy.stats.spearmanr(true_mean_scores, predict_mean_scores)[0]
KTAU = scipy.stats.kendalltau(true_mean_scores, predict_mean_scores)[0]
```

Following prior work, we picked **system-level SRCC** as the main evaluation metric.

## Baseline system: SSL-MOS

Fine-tune a self-supervised learning based (SSL) speech model for the MOS prediction task

- Pretrained wav2vec2
- Simple mean pooling and a linear fine-tuning layer
- Wav2vec2 model parameters are updated during fine-tuning



E. Cooper, W.-C. Huang, T. Toda, and J. Yamagishi, "Generalization ability of MOS prediction networks," in Proc. ICASSP, 2022

## Baseline system: MOSANet

- Originally developed for noisy speech assessment
- Cross-domain input features:
  - Spectral information
  - Complex features
  - Raw waveform
  - Features extracted from SSL models



R. E. Zezario, S.-W. Fu, F. Chen, C.-S. Fuh, H.-M. Wang, and Y. Tsao, "Deep Learning-based Non-Intrusive Multi-Objective Speech Assessment Model with Cross-Domain Features," arXiv preprint arXiv:2111.02363, 2021.

## Baseline system: LDNet

#### **Listener-dependent modeling**

- Specialized model structure and inference method allows making use of multiple ratings per audio sample.
- No external data is used!



## Challenge results

- I. Participants demographics
- II. Results, analysis and discussion
  - A. Comparison of baseline systems
  - B. Analysis of top systems
  - C. Sources of difficulty
  - D. Analysis of metrics

## Participants demographics

Number of teams: 22 teams + 3 baselines

14 teams are from academia, 5 teams are from industry, 3 teams are personal

Main track: 21 teams + 3 baselines

OOD track: 15 teams + 3 baselines

#### Baseline systems:

B01: SSL-MOS

B02: MOSANet

B03: LDNet

Table 4: List of participant affiliations in random order.

| Affiliation                                               | Main track | OOD track |
|-----------------------------------------------------------|------------|-----------|
| Ajmide Media, China                                       | Y          | Y         |
| Budapest University of Technology and Economics, Hungary  | Y          | Y         |
| Bytedance AI-Lab, China                                   | Y          | Y         |
| Charles University, Prague, Czech Republic                | Y          | N         |
| Denso IT Laboratory, Japan                                | Y          | Y         |
| Duke Kunshan University                                   | Y          | N         |
| Google; University College Dublin                         | Y          | N         |
| Inner Mongolia University, China                          | Y          | N         |
| Japan Advanced Institute of Science and Technology, Japan | Y          | N         |
| National Taiwan University, Taiwan                        | Y          | Y         |
| Netease, China                                            | Y          | Y         |
| NICT, Japan; Kyoto Univ., Japan; Kuaishou Inc., China     | Y          | Y         |
| Novosibirsk State University                              | N          | Y         |
| Personal?                                                 | Y          | Y         |
| Princeton University                                      | Y          | Y         |
| ReadSpeaker, The Netherlands                              | Y          | N         |
| Sillwood Technologies, UK                                 | Y          | Y         |
| Technical University of Cluj-Napoca, Romania              | Y          | N         |
| The University of Tokyo, Japan                            | Y          | Y         |
| Tsinghua University?                                      | Y          | Y         |
| University College Dublin, Ireland                        | Y          | Y         |
| University of West Bohemia, Czech Republic                | Y          | Y         |

## Overall evaluation results: main track, OOD track



## Comparison of baseline systems: main track



In terms of **system-level SRCC**, 11 teams outperformed the best baseline, B01! However, the gap between the best baseline and the top system is not large...

## Comparison of baseline systems: OOD track



In terms of **system-level SRCC**, only 2 teams outperformed or on par with B01.

The gap is even smaller...



Participant feedback: "The baseline was too strong! Hard to get improvement!"

## Analysis of approaches used

Main track: Finetuning SSL > using SSL features > not using SSL



- OOD track: finetuned SSL models were both the best and worst systems
- Popular approaches:
  - Ensembling (top team in main track; top 2 teams in OOD track)
  - Multi-task learning
  - Use of speech recognizers (top team in OOD track)

## Analysis of approaches used

- 7 teams used per-listener ratings
- No teams used listener demographics
  - One team used "listener group"
- OOD track: only 3 teams used the **unlabeled data:**

Conducted their own listening test (top team)



Task-adaptive pretraining



"Pseudo-label" the unlabeled data using trained model



## Sources of difficulty

Are unseen categories **more difficult?** 

| Category         | Main track            | OOD track     |  |
|------------------|-----------------------|---------------|--|
| Unseen systems   | no                    | yes (6 teams) |  |
| Unseen speakers  | <b>yes</b> (7 teams)  | N/A           |  |
| Unseen listeners | <b>yes</b> (17 teams) | no            |  |

#### Sources of difficulty

Low-quality systems are easy to predict.

Middle and high quality systems are harder to predict.



Figure 5: System-level mean squared error vs. ground-truth system-level MOS. All teams had low errors for low-scoring systems. Higher errors tend to appear for middle- and high-scoring systems.

## Conclusions

#### **Conclusions**

#### The goals of the VoiceMOS challenge:



⇒ Attracted more than20 participant teams.



⇒ SSL is very powerful in this task.



⇒ Generalizing to a different listening test is still very hard.



⇒ There will be a 2nd, 3rd, 4th,... version!!

#### Team Papers

#### **VoiceMOS Challenge Special Session Papers**

- The ZevoMOS entry to VoiceMOS Challenge 2022
  Adriana Stan
- UTMOS: UTokyo-SaruLab System for VoiceMOS Challenge 2022
  Takaaki Saeki, Detai Xin, Wataru Nakata, Tomoki Koriyama, Shinnosuke Takamichi and Hiroshi Saruwatari
- Automatic Mean Opinion Score Estimation with Temporal Modulation Features on Gammatone Filterbank for Speech Assessment Huy Nguyen, Kai Li and Masashi Unoki
- Using Rater and System Metadata to Explain Variance in the VoiceMOS Challenge 2022 Dataset
   Michael Chinen, Jan Skoglund, Chandan K. A. Reddy, Alessandro Ragano and Andrew Hines
- DDOS: A MOS Prediction Framework utilizing Domain Adaptive Pre-training and Distribution of Opinion Scores Wei-Cheng Tseng, Wei-Tsung Kao and Hung-yi Lee

#### **Poster Sessions**

- A Transfer and Multi-Task Learning based Approach for MOS Prediction Xiaohai Tian, Kaiqi Fu, Shaojun Gao, Yiwei Gu, Kai Wang, Wei Li and Zejun Ma
- Fusion of Self-supervised Learned Models for MOS Prediction
  Zhengdong Yang, Wangjin Zhou, Chenhui Chu, Sheng Li, Raj Dabre, Raphael Rubino and Yi Zhao