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Background
Classifiers that use standard training can achieve high average accuracy but 
perform poorly on certain minority groups.

● Standard training (ERM) models often spuriously correlate attributes, such as the 
existence of negation words in a sentence, to frequently-co-occurring labels.
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Background
Classifiers that use standard training can achieve high average accuracy but low 
accuracy on certain minority groups.

● Models perform poorly on groups (“worst groups”) where the spurious correlation does not 
hold. 
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48.6% acc. on worst group 
(Supports with negation)
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Background: Related Work
● Methods that use group and attribute information during training can 

effectively improve worst group accuracy, but are expensive to annotate.

● We focus on improving one of the methods that do not require group 
information during training, called Just Train Twice (Liu et al., 2021), or JTT.
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Proposed Method: JTT-m
When these undesirable examples gets upweighted, JTT’s effectiveness might be 
hampered.
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Proposed Method: JTT-m
We propose to remove the outliers from the error set before upweighting!

To remove the outliers, we adopt a similar approach to Lee et al. (2018)’s method:

1. Obtain the penultimate embedding layer of the model
2. Calculate Mahalanobis distance M(x) for each example embedding x in the error set:

3. Filter out examples whose M(x) does not meet our threshold
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Experiments: Indicators to Track
● Worst-group accuracy
● Average accuracy



Experiments: Indicators to Track



Experiments: Indicators to Track



Experiments: Indicators to Track

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Indicators to Track

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Indicators to Track

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Indicators to Track

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Main Results

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Main Results

* indicates statistical significance of difference between JTT and JTT-m (paired t-test, p < 0.05)



Experiments: Discussion
● A large portion of classes Supports and Entailment error set are regarded as 

outliers.



Experiments: Discussion
● A large portion of classes Supports and Entailment error set are regarded as 

outliers.
● Outlier examples contains much higher percentage of annotation errors than 

in-distribution examples in 100 random samples.



Summary
● Standard (ERM) training often performs poorly on certain worst groups.

● JTT proposes to improve worst-group accuracy by upweighting the error set 
before retraining on the upweighted training set without using 

● We propose JTT-m, which improves JTT by removing outliers from the error 
set before upweighting and retraining.

● A higher percentage of annotation errors may be found in the outliers 
detected, which may be one reason removing outlier improves JTT.
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https://github.com/nii-yamagishilab/jtt-m


