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Background

Classifiers that use standard training can achieve high average accuracy but
perform poorly on certain minority groups.

e Standard training (ERM) models often spuriously correlate attributes, such as the
existence of negation words in a sentence, to frequently-co-occurring labels.
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Background

Classifiers that use standard training can achieve high average accuracy but low
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e \We can partition a dataset into “groups”, where each group is a set of examples with a
combination of a spurious aftribute and a class label.

FEVER dataset (Thorne et al. 2018)

Supports

Input: claim + evidence =  Label: Refutes
P NotEnoughlnfo

claim: “Luis Fonsi does not go by his
given name on stage.”

evidence: ; with negation word : :
“Luis Alfonso Rodriguez Lépez-Cepero, more Attribute: ith tg i q in claim
commonly known by his stage name Luis BT risig et ool

Fonsi, (born April 15, 1978) is a Puerto Rican
singer, songwriter and actor.”



Background

Classifiers that use standard training can achieve high average accuracy but low
accuracy on certain minority groups.

® Models perform poorly on groups (“worst groups”) where the spurious correlation does not

hold.
FEVER dataset (Thorne et al. 2018)
Supports 87.8% average accuracy
Input: claim + evidence =  Label: Refutes

NotEnoughlinfo 48.6% acc. on worst group

. . . . (Supports with negation)
claim: “Luis Fonsi does not go by his

given name on stage.”

Attribute: < With negation word in claim
without negation word



Background: Related Work

e Methods that use group and attribute information during training can
effectively improve worst group accuracy, but are expensive to annotate.

e We focus on improving one of the methods that do not require group
information during training, called Just Train Twice (Liu et al., 2021), or JTT.



Background: JTT (Liuetal. 2021)

Training set examples

train

ERM
model



Background: JTT

Training set examples

predict trained
ERM
model



Background: JTT

Training set examples

predict tl’alned
ERM
model



Background: JTT

correctly mis-
predicted classified

Training set examples

ERM

model



Background: JTT

correctly
Training set examples predicted clz

predict trained identify
ERM
model



Background: JTT

correctly mis-
predicted classified

o correctly mis-
Training set examples predicted classified

predict trained  identify upweight
ERM
model



Background: JTT

correctly mis-
predicted classified

o correctly mis-
Training set examples predicted classified

predict  trained  identify upweight train ERM
ERM
model model



Background: JTT

Training set examples

predict

trained
ERM
model

identify

correctly mis-
predicted classified

upweight

correctly mis-
predicted classified

optimal
upsampling
rate

train ERM
model

validation
set



Proposed Method: JTT-m
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Proposed Method: JTT-m

The upweighted error set may contain untrainable or out-of-distribution (OOD)
examples
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Proposed Method: JTT-m

When these undesirable examples gets upweighted, JTT's effectiveness might be
hampered.
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We propose to remove the outliers from the error set before upweighting!
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Proposed Method: JTT-m

We propose to remove the outliers from the error set before upweighting!

To remove the outliers, we adopt a similar approach to Lee et al. (2018)’s method:

1. Obtain the penultimate embedding layer of the model
2. Calculate Mahalanobis distance M(x) for each example embedding x in the error set:

Correct, neg

- R, et e
M(x) = \/ (X =) T2 (x—py) W S : e
f.: v Outlier, no neg

3. Filter out examples whose M(x) does not meet our threshold f" . _-;i:;._-._ L
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Proposed Method: JTT-m

We propose to remove the outliers from the error set before upweighting!
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Experiments: Indicators to Track

e \Worst-group accuracy
e Average accuracy

Dataset FEVER MultiNLI

Avg. (%) Worst (%) Avg. (%) Worst (%)

ERM 87.8+02 48.6+0.7 84.9.10.1 72.0+1.0
JTT 86.810.2 50.5435 83.0+02 75.5+15
JTT-m  87.4:0.1* 50.2428 83.0+03 77.3+04
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Experiments: Main Results

Group JTT JTT-m Group JTT JTT-m
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Experiments: Discussion

e Alarge portion of classes Supports and Entailment error set are regarded as

outliers.
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Experiments: Discussion

e Alarge portion of classes Supports and Entailment error set are regarded as
outliers.

e Qutlier examples contains much higher percentage of annotation errors than
in-distribution examples in 100 random samples.

Dataset FEVER MultiNLI

Sout 24 10
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Summary

e Standard (ERM) training often performs poorly on certain worst groups.

e JTT proposes to improve worst-group accuracy by upweighting the error set
before retraining on the upweighted training set without using

e We propose JTT-m, which improves JTT by removing outliers from the error
set before upweighting and retraining.

e A higher percentage of annotation errors may be found in the outliers
detected, which may be one reason removing outlier improves JTT.
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e JTT proposes to improve worst-group accuracy by upweighting the error set
before retraining on the upweighted training set

e We propose JTT-m, which improves JTT by removing outliers from the error
set before upweighting and retraining.

e A higher percentage of annotation errors may be found in the outliers
detected, which may be one reason removing outlier improves JTT.

O https://github.com/nii-yamagishilab/jtt-m




