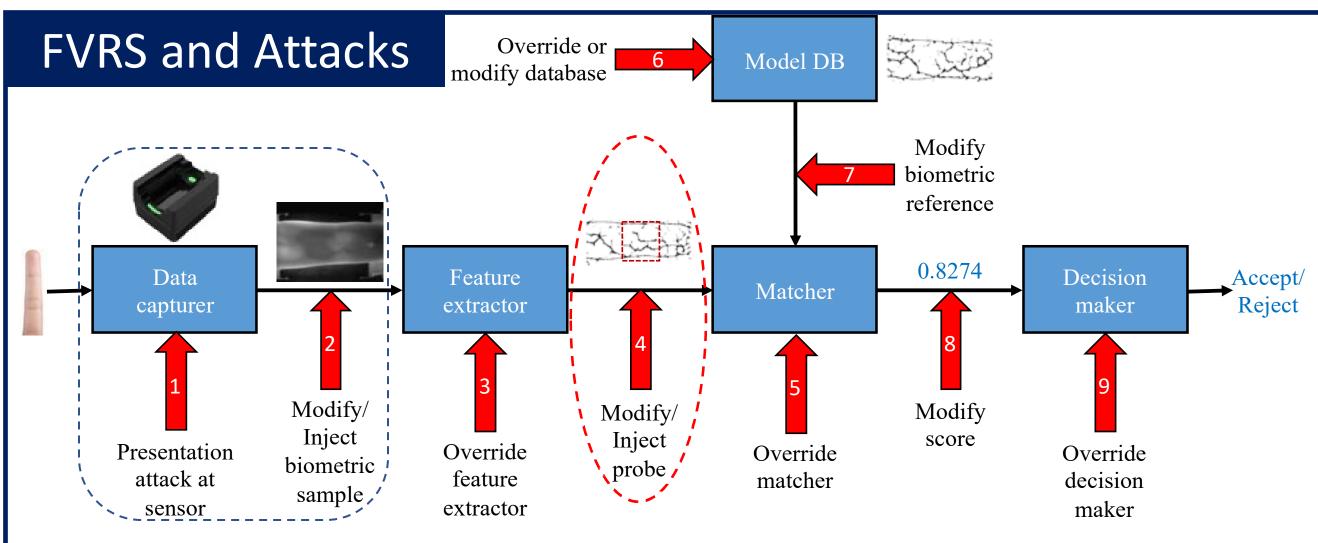


Analysis of Master Vein Attacks on Finger Vein Recognition Systems

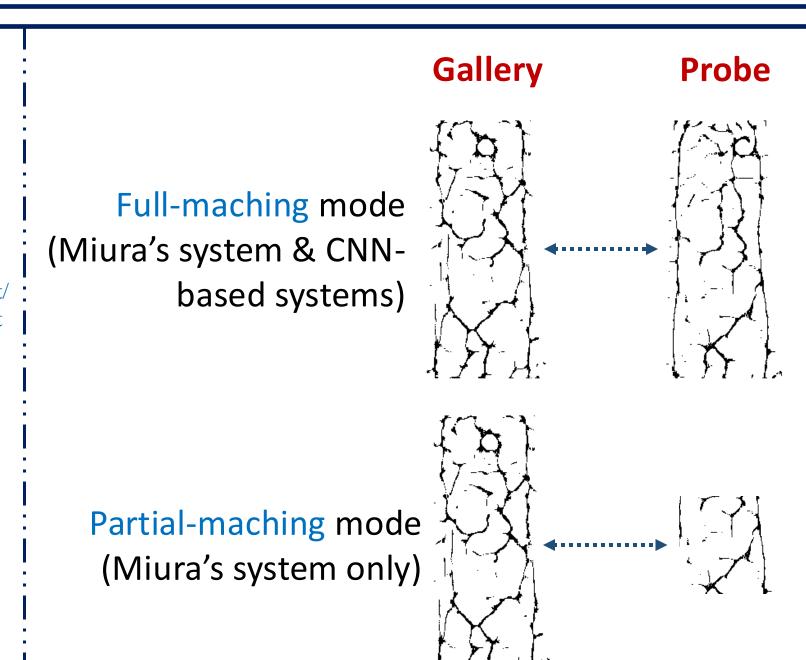
Email: nhhuy@nii.ac.jp

Huy H. Nguyen¹, Trung-Nghia Le¹, Junichi Yamagishi¹, and Isao Echizen^{1,2} ¹National Institute of Informatics, Japan ²The University of Tokyo Japan

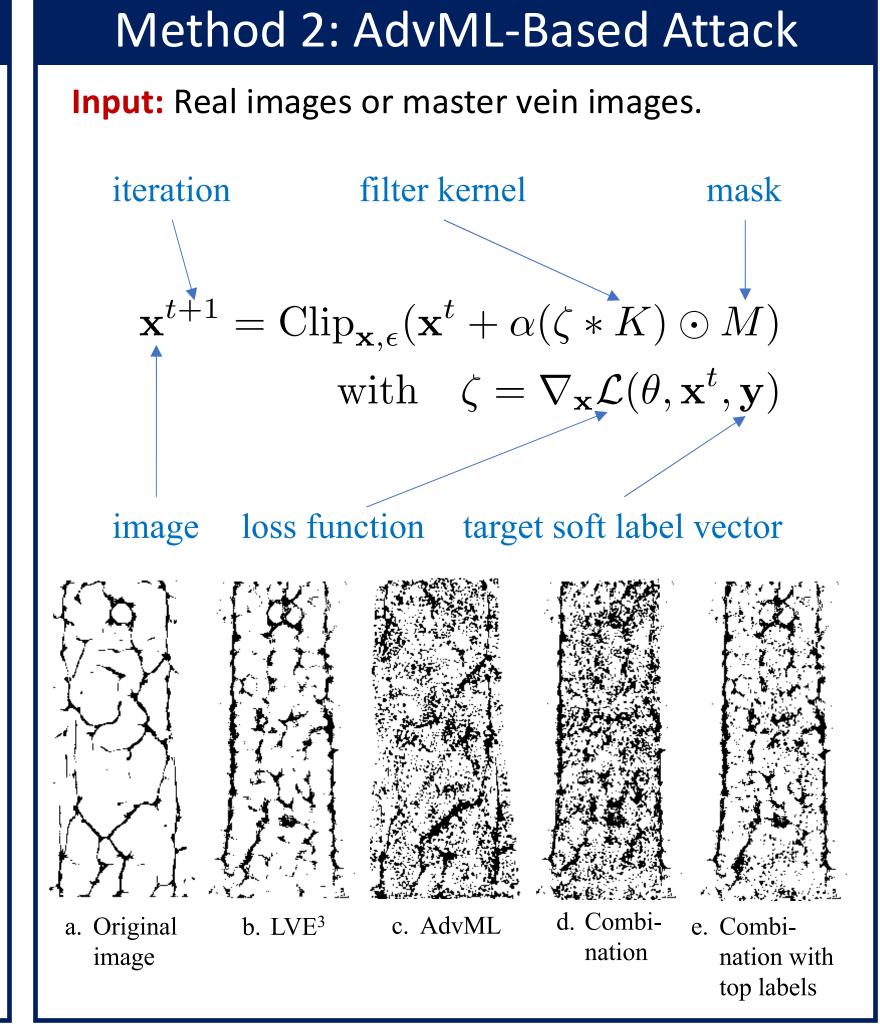
Introduction


Finger vein recognition (FVRS) have systems been deployed in ATMs.

- Some systems use hand-crafted features and do not have proper presentation attack detectors.
- They may be vulnerable to master vein attacks.


Contributions Four-fold:

- Point out that Miura's FVRS can be easily compromised by non-veinlooking and vein-looking images (FAR up to 94.21%).
- Combine β-VAE and WGAN-GP models to generate large, good-quality vein images used in latent variable evolution (LVE)-based attack.
- Present a k-label targeted adversarial machine learning (AdvML) attack.
- Combine LVE-based attack and AdvML-based attack (FAR up to 88.79%).



We focus on attack no. 4:

- Have clear vein images → Easy for generation & analysis.
- Master veins can be "translated" to other forms to perform attack no. 1 and 2.

Method 1: LVE-Based Attack CMA-ES Flow: Gallery Train β-VAE database Decoder/ Encoder Generator → Scores Decoder → generator Add discriminator Real ··· or Fake Train WGAN-GP Generator Run LVE algorithm Master vein a. Original b. WGAN-GP c. β-VAE d. Our method

Dataset: SDUMLA-HMT:

106 subjects

VERA FingerVein: 110 subjects

Results & Discussions

Attacks on Known Database (SDIIMI A-HMT) and Systems

 (LVE^2)

 (LVE^3)

 (LVE^1)

image

 LVE^1+A (Top)

Attacks on Known Database (SDUMLA-HMT) and Systems						Metric: False acceptance rate					
Matcher	Miura's system (Partial matching)		Miura's system (Full matching)		ResNeXt-50		ResNet-18		MobileNetV3-L		
Attack \ Dataset	Train set	Test set	Train set	Test set	Train set	Test set	Train set	Test set	Train set	Test set	
Bona fide	07.57	08.02	08.46	08.98	0.00	2.25	0.00	3.37	0.00	1.31	
LVE ¹ (WGAN-GP)	68.24	70.41	92.46	94.21	1.85	1.92	1.51	2.25	0.67	1.50	
LVE 2 (β -VAE)	59.63	59.27	54.75	43.89	0.10	1.44	0.90	2.42	0.33	0.33	
LVE ³ (Combination)	70.47	69.85	73.29	71.84	1.46	6.07	0.96	5.86	0.53	2.03	
AdvML	11.34	13.11	32.02	49.52	1.88	3.69	1.44	2.24	0.61	1.46	
$LVE^3 + AdvML$	48.20	50.00	82.36	88.79	1.82	3.35	1.15	1.93	0.48	0.64	
$LVE^3 + AdvML (Top)$	62.73	62.52	77.82	80.41	2.37	5.32	1.60	4.00	1.03	3.47	
$LVE^1 + AdvML (Top)$	76.60	76.95	91.86	93.81	1.68	1.85	1.52	2.09	0.55	0.40	

39.28

Cross-Database (VERA FingerVein) and Cross-System Attacks										
Matcher	Miura's	Miura's	ı 	ı 	ı 					
	system	system	ResNeXt	ResNet	Mobile					
	(Partial	(Full	50	18	NetV3-L					
Attack	matching)	matching)								
Bona fide	04.07	03.13	8.22	7.28	8.10					
LVE ¹ (WGAN)	38.84	43.86	0.18	0.10	0.18					
LVE^2 (β -VAE)	15.08	02.92	0.00	0.00	0.00					
LVE ³ (Comb.)	20.84	19.54	0.54	0.00	0.01					
AdvML (A)	03.12	03.57	0.20	0.04	0.18					
LVE ³ +A	16.37	47.73	0.42	0.01	0.18					
LVE^3+A (Top)	22.25	26.34	0.82	0.52	0.21					

44.49

0.18

0.01

0.17

- Miura's system was vulnerable in most attack scenarios.
- LVE-based + AdvML-based methods achieved better results than single methods.
- CNN-based systems were more robust.
- → Raises the alarm on the robustness of the FVRS, especially hand-crafted systems \rightarrow Must use countermethods (e.g., quality assessment, measure presentation attack detection).