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Introduction

n

Contributions

• Point out that Miura’s FVRS can be easily compromised by non-vein-
looking and vein-looking images (FAR up to 94.21%).

• Combine β-VAE and WGAN-GP models to generate large, good-quality 
vein images used in latent variable evolution (LVE)-based attack.

• Present a k-label targeted adversarial machine learning (AdvML) attack.

• Combine LVE-based attack and AdvML-based attack (FAR up to 88.79%).

Four-fold:

• Some systems use hand-crafted features and do not 
have proper presentation attack detectors.

→ They may be vulnerable to master vein attacks.

Source: 
CNN

FVRS and Attacks

We focus on attack no. 4:
• Have clear vein images → Easy for generation & analysis.
• Master veins can be ”translated” to other forms to perform attack no. 1 and 2.
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Method 1: LVE-Based Attack Method 2: AdvML-Based Attack
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• Finger vein recognition 
systems (FVRS) have 
been deployed in ATMs.
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Flow:

Train β-VAE

Decoder → generator

Add discriminator

 Train WGAN-GP

Generator

Run LVE algorithm

Master vein

Input: Real images or master vein images.

Results & Discussions
Attacks on Known Database (SDUMLA-HMT) and Systems

Cross-Database (VERA FingerVein) and Cross-System Attacks • Miura’s system was vulnerable in most attack 

scenarios.

• LVE-based + AdvML-based methods achieved better 

results than single methods.

• CNN-based systems were more robust.

→ Raises the alarm on the robustness of the FVRS, 

especially hand-crafted systems → Must use counter-

measure methods (e.g., quality assessment, 

presentation attack detection).

Dataset: SDUMLA-HMT: 106 subjects
 VERA FingerVein: 110 subjects
Metric: False acceptance rate
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