
1 2 3 4 5 6 7 8
Active learning iteration index

2∞ bonafide

3∞ bonafide

4∞ bonafide

5∞ bonafide

6∞ bonafide

2∞ spoof

3∞ spoof

4∞ spoof

5∞ spoof

6∞ spoof

6.4

6.3

3.0

0.4

35.6

8.2

20.2

15.9

4.0

0.0

24.0

2.2

1.5

0.9

54.4

0.4

5.8

5.2

5.7

0.0

11.8

2.7

2.6

2.2

62.8

1.6

6.6

4.9

4.9

0.0

10.6

5.0

4.5

2.1

26.4

2.2

14.8

2.5

31.9

0.0

27.5

9.7

3.5

0.7

46.0

3.9

0.3

0.8

7.6

0.0

38.0

10.3

0.7

0.2

43.5

3.0

0.7

2.6

1.0

0.0

5.0

11.5

0.1

0.2

77.0

0.3

1.1

1.1

3.8

0.0

9.8

9.5

0.1

0.1

76.6

1.1

0.1

0.0

2.7

0.0

ALNegEPercentage (%) of pool set data selected by

1
2.6k
4%

2
5.1k
9%

3
7.7k
14%

4
10.2k
18%

5
12.8k
23%

6
15.4k
28%

7
17.9k
33%

8
20.5k
37%

AL iteration index, accumulated number of data
selected from pool set, and percentage

0.0

0.5

1.0

1.5

2.0

2.5

E
E

R
(%

)

2019 LA eval.

Base
Top
ALPosE
ALPas.
ALNegE

ALRem

2

3

4

5

6

7

8

9
2021 LA eval.

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
2021 DF eval.

6

8

10

12

14

16

18

20

22
WaveFake

How to estimate the usefulness of the data? (Sec.2.1)
§ One metric: negative energy score [5]. It measures

whether the data is out of training data distribution.

Investigating Active-learning-based Training Data Selection 
for Speech Spoofing Countermeasure Xin Wang, Junichi Yamagishi, National Institute of Informatics

§ A common practice: train a CM using a training set; test its
performance on a test set; both sets are from a standard database.
§ The trained CM may not well generalize [1,2,3].
§ More training data?

§ In real scenarios where abundant data is available, can the CM
automatically select useful data during training?
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Training by active learning[4] (AL) 

Experiments & findings

Spoofing 
countermeasure 

(CM)
Spoofed

Bona fideSpeech
data

CM configurations (following our previous work [3])
§ Front end: wav2vec2.0 XLSR-53, fine-tuned with the back end
§ Back end: global average pooling, a linear layer, softmax
Datasets
§ Seed training set: ASVspoof 2019 logical access training set
§ Pool sets were created from databases with diverse attacking

methods (att.), languages (lang.), and speakers (spk.).

§ Test sets: ASVspoof 2019, 2021 (LA & DF), and WaveFake [7]

Contact: wangxin@nii.ac.jp,  Code: https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts   project/08-asvspoof-activelearn 
Partially supported by JST CREAST grant JPMJCR18A6, JPMJCR20D3, JSPS KAKEN 21K17775, 21H04906, 18H04112, and Google AI for Japan program.   
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Pre-train CM on a seed training set
1. Measure the usefulness of pool set data
2. Select and add useful data to the training set
3. Fine-tune CM, go to step 1
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Experimental systems:
Conventional training methods
§ Base: trained w/ seed set
§ Top: trained w/ seed & pool set B
AL methods using pool set B
§ ALNegE: negative energy score
§ ALPosE: similar to ALNegE but with 

the energy score value reversed
§ ALPas: random energy score
§ ALRem: active data removing w/ 

negative energy score
After the 8th iteration, 37% of the data segments in the 
pool set were added to the training set.

Highlighted findings:
§ Can the CM automatically select useful data and train itself? Yes

§ Good AL methods (e.g., ALNegE) are more data efficient than Top.
§ However, do NOT select useless data (ALPosE).
§ Simple random data selection (ALRem) is good [8].

§ What kind of pool data was found to be useful? VoxCeleb1
§ Other findings: do we need a good pool set?  Yes, the pool set 

should have diverse data (see sec.3.3).

Equal error rates (EER %) on four test sets
Each line shows max, average, and min EER values after running the experiment three times

Alternative AL approach: actively remove useless
data from the pool and randomly select (Sec.2.2)

CM

ALNegE

Negative energy scores of 
In-dist. spoofed, in-dist. bona fide, 
Out-of-dist. spoofed, out of dist. bona fide data

[6]
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(a) Base data subsets

ID Source #. Trial Dur. (h) Lang. #. Spr #. Att

1○ ASVspoof2019 LA trn. 2,580 / 22,800 24.0 En 20 6
2○ FMFCC-A, trn. 4,000 / 6,000 5.5 Zh 77 5
3○ ESPNet on LibriTTS 736 / 4,275 8.0 En >80 6
4○ ESPNet on LJSpeech 200 / 1,800 3.6 En 1 9
5○ BC 2019 75 / 5,925 15.5 Zh 1 25
6○ VoxCeleb1 6,000 / 0 13.6 Mul. >1 k 0

(b) AL seed and pool sets created from base data subsets

Base data #. Trial Dur. (h) Lang. #. Spr #. Att.

Seed set 1○ 2,580 / 22,800 24.0 En 20 6
Pool set A 2○+ 3○ 4,736 / 10,275 13.5 En, Zh >150 11
Pool set B 2○+ 3○+ 4○+ 5○+ 6○ 11,011 / 18,000 46.3 Mul. >1.1 k 45
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