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Motivation

e MIDI-to-Audio methods

o Conventional
m FluidSynth: pre-recording and resampling audio for synthesis
m Pianoteq: constructing physical model for audio synthesis
..
o Neural Network based
m MIDI-DDSP: Multiple stages feature generation: Expression, Synthesis, and DDSP
m Deep Performer: decomposing note attributes and synthesis music
u

[1] Wu, Yusong, et al. "MIDI-DDSP: Detailed control of musical performance via hierarchical modeling." International Conference on Learning

Representations (ICLR), 2021.
[2] Dong, Hao-Wen, et al. "Deep performer: Score-to-audio music performance synthesis." IEEE International Conference on Acoustics, Speéew

and Signal Processing (ICASSP). IEEE, 2022.



Motivation

e Text-to-Speech and MIDI-to-Audio
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Xin Wang, and Junichi Yamagishi, “Text-to-speech synthesis techniques for MIDI-to-audio synthesis.” SSW 11 (2021): 130-135
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Motivation MIDI filter-bank features

e Previous work
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Piano roll features
I
Tacotron2 Neural source-filter (NSF) model
« Synthesized audio quality is limited Q1: How to improve the synthesized audio quality

« Training & synthesis are time consuming Q2: How to make the synthesis efficient

[3] Erica Cooper, Xin Wang, and Junichi Yamagishi, “Text-to-speech synthesis techniques for MIDI-to-audio synthesis.” SSW 11 (2021): 130-135
[4] Jonathan Shen, et.al. “Natural TTS synthesis by conditioning WaveNet on Mel spectrogram predictions”, ICASSP 2018
[5] Wang, Xin, et.al.. "Neural source-filter waveform models for statistical parametric speech synthesis." IEEE/ACM TASLP 2019



Methods to improve synthesized audio quality

e \Waveform Model with GAN
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| MIDI | E=1 |Acoustic| “——— |waveform| | = + HiFi- i i
% APl [ D | model [Acoustd| model [T 2 HiFi-GAN NSF + HiFi-GAN discri.
P'an:(c) roll featgres Acoustic features Acoustic features
— N | : I
HiFi Generator . NSF
Neural filter module :
Block 1 v ; v
Excitation : | Dilated Dilated IR Block s way Wav Wav
FC FC & 5
signal 1D :onv 1D :onv I I
1 1 Z )
]
Condition module ]
Acoustic . .
AoouSHC | BI-LSTM |+ 1D CNN |~ Up-sampling | Hilzliw %igcrli\Tsir[])e;tor

Previous model: NSF
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[6] Kong, Jungil, Jaehyeon Kim, and Jaekyoung Bae. "Hifi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesx

Advances in Neural Information Processing Systems 33 (2020): 17022-17033.



Methods to improve synthesized audio quality

e Joint training of acoustic and waveform models
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Methods to improve synthesis efficiency

e Acoustic Model based on Transformer
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Experiments — Conditions & Evaluation

e Database - MAESTRO

Train/Validation/Test: 159/19/20 hours

MIDI and audio alignment: < 3ms

Resampled to 24 kHz

Segmented to 800-frame pieces, around 10 seconds

@)

o O O

e Subjective — crowdsourced subjective listening test

o Mean Opinion Score (MOS), 1-5, the higher the better
o 229 non-professional listeners
o 510 samples per system are rated

e Objective (see results in the paper)
o L2 distance on MIDI-Spectrogram, Chroma, Cross entropy on FO

[10] Hawthorne, Curtis, et al. "Enabling factorized piano music modeling and generation with the MAESTRO dataset." In International Confere.. e
on Learning Representations, 2019.



Experiments — Systems

e Baseline: Fluidsynth, Pianoteq

e Reference with “perfect acoustic model”:

o abs-*-* : use acoustic features extracted from test
set audios \ {

e Systems

o Acoustic model: Tacotron or Transformer
o Waveform model: NSF, NSF-GAN, HiFi-GAN
o Training strategy: separate or joint training

Note for join training:

@)
@)

Stage 1: Pre-Train: separately train acoustic model and waveform model

System ID

Acoustic Acoustic

model

Wave.

feature model

Joint
train

Natural

Software-based baselines

Fluidsynth
Pianoteqg

Sample-based MIDI-to-audio s.w.

Physical-model MIDI-to-audio s.w.

/{

Synthesis system trained on flawed MIDI spectrogram

abs-mfbf-nsfs
taco—-mfbf-nsfs
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Waveform model trained on refined MIDI spectrogram

abs—-mfb-nsfs
abs—-mfb-nsf
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midi-fb-f NSF[1]

midi-fb-f NSF[1]
midi-fb  NSF[1]
midi-fb NSF

midi-fb NSF-GAN
midi-fb  HiFi-GAN

Acoustic model train
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taco—-mfb-nsfg
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trans—-mfb-nsfs
trans-mfb-nsf
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trans—-mfb-hfg

U UIl ICIL
taco
taco
taco
taco
trans
trans
trans
trans

ed MIDI
midi-fb
midi-fb
midi-fb
midi-fb
midi-fb
midi-fb
midi-fb
midi-fb

NSF [1]
NSF
NSF-GAN
HiFi-GAN
NSF [1]
NSF
NSF-GAN
HiFi-GAN

Joint training

JOLINILTIIS L
joint-nsfg

of acoustic and W

trans
trans

joint-hfg

trans

aveform fnodel
midi-fb | F

midi-fb GAIN
midi-fb | Hn [GAN

Stage 2: Joint-Train: load pre-trained model weights, jointly train acoustic & waveform model
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Experiments — Subjective Evaluation Results

Table 1. Experimental systems and evaluation results.

System ID Acoustic Acoustic ~ Wave. i oipt Obj. Eval. MOS
ystem model feature model  train Pitch Chroma Spec|| (mean)
Natural - - - - - - -] 398
Software-based baselines
Fluidsynth Sample-based MIDI-to-audio s.w. 1.00 0.33 13.95 3.56
Pianoteq Physical-model MIDI-to-audio s.w. ~ 0.92 0.32 12.1¢ 4.10
Synthesis system trained on flawed MIDI spectrogram
abs-mfbf-nsfs - midi-fb-f NSF[1] - 101 031 6.60§ 3.71
taco-mfbf-nsfs taco midi-fb-f NSF[1] - 118 037 9.65) 2.95
Waveform model trained on refined MIDI spectrogram
abs-mfb-nsfs - midi-fb  NSF[1] - 131 038 5.72§ 3.31
abs-mfb-nsf - midi-fb NSF - 137 039 7.20f 3.35
abs-mfb-nsfg - midi-fb NSF-GAN - 126 034 5.14] 3.69
abs-mfb-hfg - midi-fb HiFi-GAN - 1.16 031 4.69| 3.80
Acoustic model trained on refined MIDI spectrogram
taco-mfb-nsfs  taco midi-fb  NSF[1] - 1.19 037 9.70} 3.16
taco-mfb-nsf taco  midi-fb NSF - 129 040 117§ 3.16
taco-mfb-nsfg taco midi-fb NSF-GAN - 1.11 035 9.09} 3.18
taco-mfb-hfg taco midi-fb HiFi-GAN - 158 0.56 1007 221
trans-mfb-nsfs trans midi-fb  NSF[1] - 133 041 941} 322
trans-mfb-nsf trans midi-fb NSF - 142 044 1094 3.10
trans-mfb-nsfg trans midi-fb NSF-GAN - 127 040 9.15] 3.08
trans-mfb-hfg trans midi-fb HiFi-GAN - 1.83 0.60 9.95] 1.88
Joint training of acoustic and waveform model
joint-nsf trans  midi-fb NSF v 159 047 1639 2.23
joint-nsfg trans midi-fb NSF-GAN v 1.12 038 9.09] 3.32
joint-hfg trans midi-fb HiFi-GAN v 1.10 038 9.14} 3.58
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joint-nsf
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=
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Results of two-sided Mann-Whitney U test with Holm-Bonferron

correction. Grey block indicates statistically significant difference \\

ata=0.05




Quality (MOS)

Experiments — Subjective Evaluation Results

e Analysis-by-synthesis systems comparison
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Quality (MOS)

Experiments — Subjective Evaluation Results

e Analysis-by-synthesis systems comparison
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Quality (MOS)

Experiments — Subjective Evaluation Results

e MIDI-to-Audio systems comparison
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Quality (MOS)

Experiments — Subjective Evaluation Results

e MIDI-to-Audio systems comparison
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Separate Training

Joint Training

Natural trans-mfb-nsf \ trans-mfb-nsf trans-mfb- hfg ‘ ‘ joint-nsf Jomt nsfg jomt hig ‘
/ Sep-jomt tralnlng Comparlson \
T e e e e e e e + ;
PR S CUSUNSTWINY U I SONS RSI SV S SO S S R IS S E— — s
7]
@]
2
> I [ — =1 S £ X S
£
>
@)
2 P e - —
1 =2 [ = S eevencatmanen: oo mue oo iasesemimmessosssscolBBeesossasesensssstsssencd E........... S — TR
T T T T T T T T T T T T T l T T T T T T
< A e K oS S S0 O oS S KO 100 (8 (&9 10 o 9, 0
\Aa\\) ?\\)\65\!?\ a(\ «\&\ok«(:“,\‘o\—(\ ((\&b “\,\0 (j((\\b’“% R0 g\ “\‘b o Q0 Q\ k‘oﬂ(\s 20 ‘(\ bf\ 0" (\«\ “‘5 b N _\6\(\\2\“\_—“?\6\(\\\\
\0 S b% xaC \aco \ac,o \30 “fa,(\ (\5 \

e

e o™

16



Conclusion

s Can we improve the quality of the synthesized audio? If yes, how?
> Yes!
> TTS architecture + HiFi-GAN + joint training -> high-fidelity piano music
> Best midi-to-audio system gets MOS 3.58.

% Can we improve the synthesis efficiency of the system? If yes, how?
> Yesl!
> Transformer-based acoustic model improves efficiency while keeping
performance.
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Conclusion

s Can we improve the quality of the synthesized audio? If yes, how?
> Yesl!
> TTS architecture + HiFi-GAN + joint training -> high-fidelity piano music
> Best midi-to-audio system gets MOS 3.58.

% Can we improve the synthesis efficiency of the system? If yes, how?
> Yes! Transformer-based acoustic model improves efficiency while keeping

performance.
* What is the practical impact of the midi-to-audio synthesis?

> Investigate more areas related to music synthesis, such as timbre transfer,
multi-instrument audio synthesis, and performance generation in future work. .

L
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