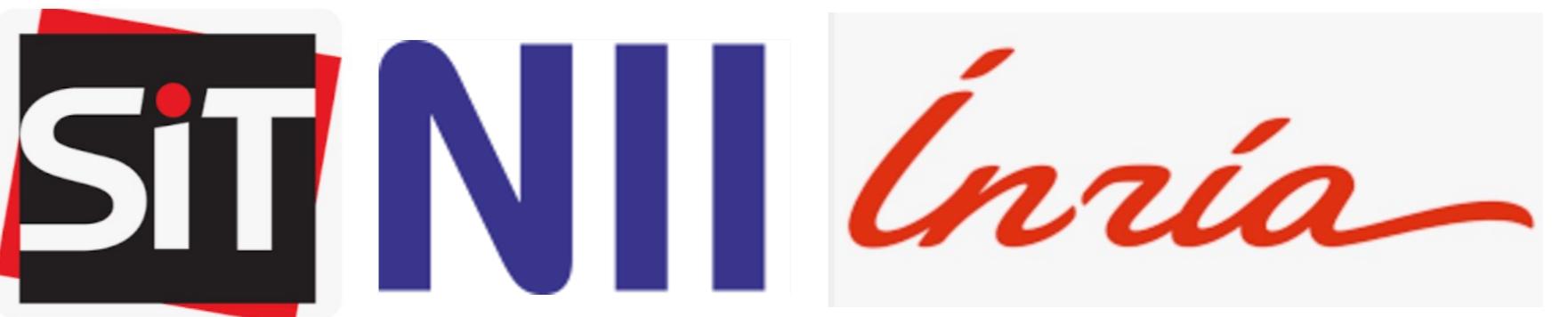


Speaker Anonymization using Orthogonal Householder Neural Network

Xiaoxiao Miao¹, Xin Wang², Erica Cooper², Junichi Yamagishi², Natalia Tomashenko³

1 Singapore Institute of Technology, 2 National Institute of Informatics, 3 Inria



IEEE/ACM TASLP 2023

Paper

Audio samples

Introduction

Speaker anonymization: Hide speaker identity (privacy) but keep other information (utility), e.g. linguistic content, speaker diversity, allowing anonymized speech is still useful for downstream tasks [1][2].

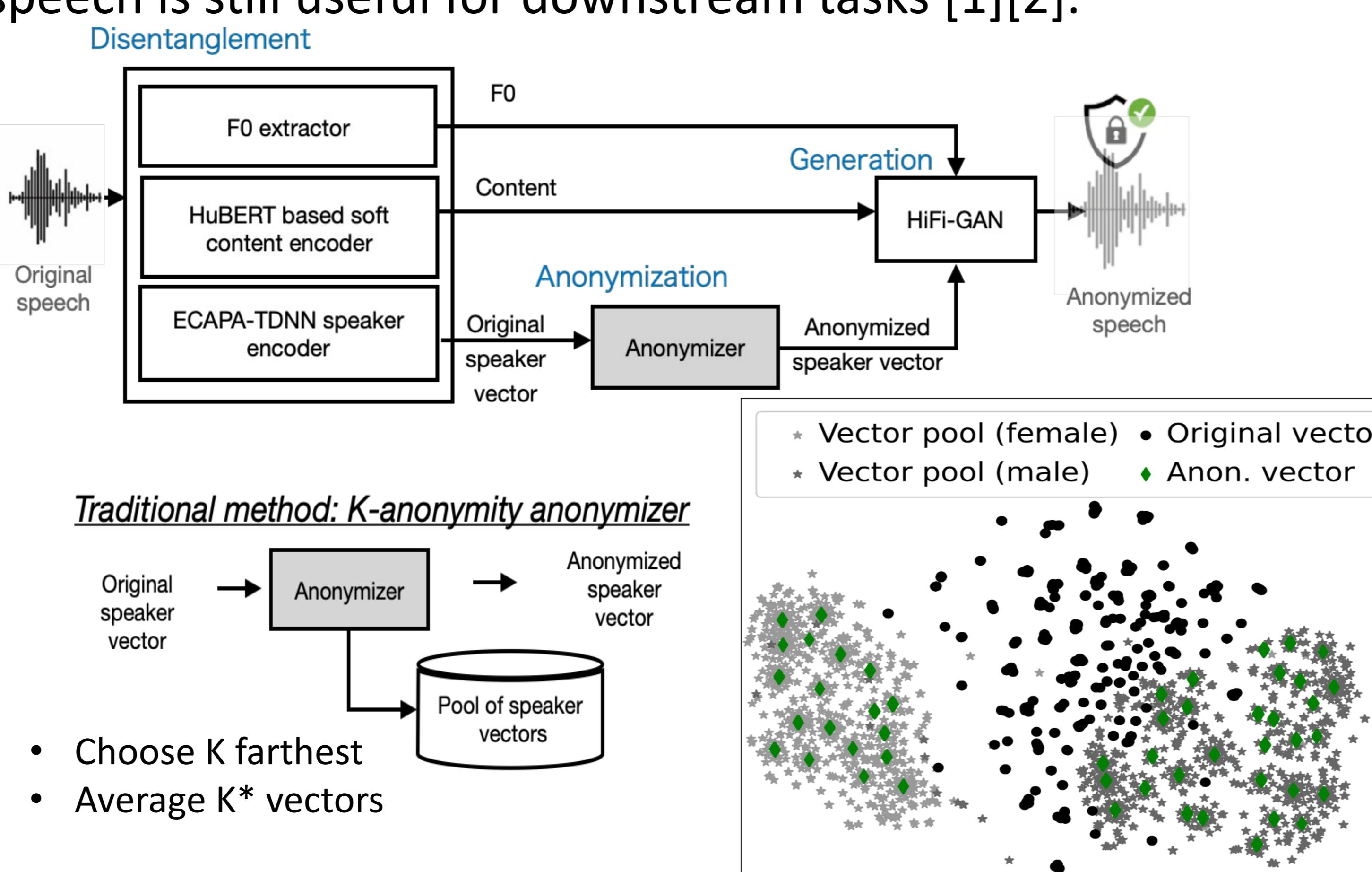
1. Digital signal processing: perceptually manipulate speech such as the pitch, spectral envelope, and time scaling

Poor speech intelligibility

2. Disentanglement-based speaker anonymization using K-anonymity anonymizer

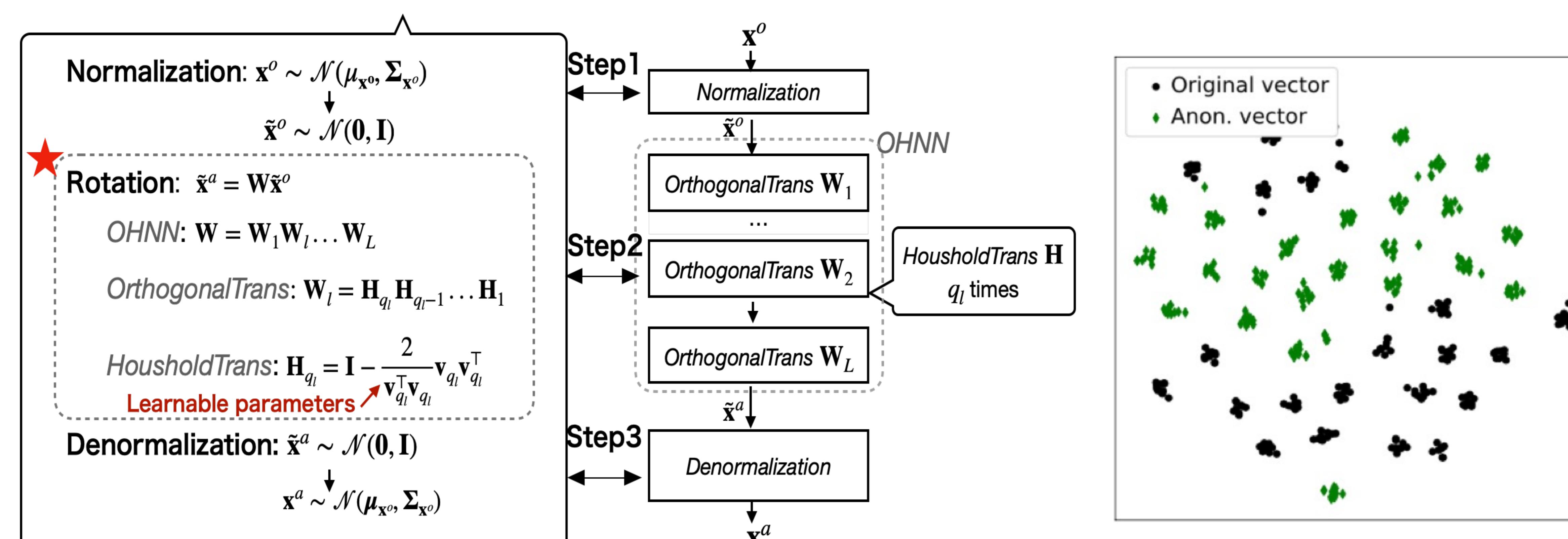
- Disentangle speech into F0, content, and original speaker vector
- Speaker vector carries most of the private information

Poor speaker diversity



OHNN-based anonymizer

Distribution-preserving transformation: Orthogonal Householder neural network:



Interested in speaker anonymization?

The VoicePrivacy Challenge (VPC) 2024 is open. Welcome your contribution!

[1] Tomashenko N, Miao X, Champion P, Meyer S, et al. The VoicePrivacy 2024 Challenge Evaluation Plan

[2] Tomashenko N, Wang X, Vincent E, et al. The voiceprivacy 2020 challenge: Results and findings[J]. Computer Speech & Language, 2022, 74: 101362.

[3] Miao X, Wang X, Cooper E, Yamagishi J, Tomashenko N. Language-independent speaker anonymization approach using self-supervised pre-trained models, Odyssey 2022.

[4] Patino J, Tomashenko N, Todisco M, Nautsch A, and Evans N. Speaker Anonymisation Using the McAdams Coefficient. Interspeech 2021.

How to achieve an ideal anonymizer

C1 Speaker privacy protection

Anonymized speech **sounds dissimilar** from original speech to hide the original speaker's identity

C2 Speaker diversity

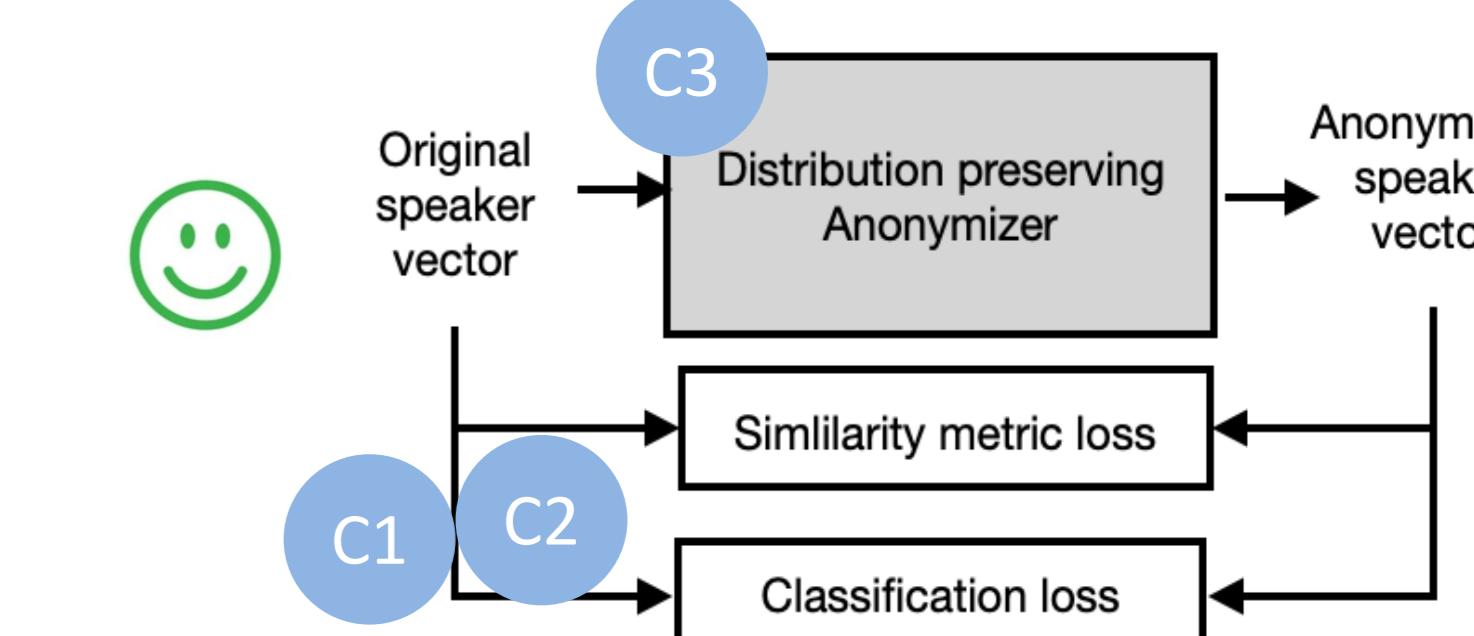
Anonymized speech from the same speaker has a **unique speaker identity** to maintain the diversity of anonymized speech **across different speakers**, allowing anonymized speech used for different downstream tasks, e.g. speaker verification.

C3 Speech intelligibility and naturalness

Anonymized speech satisfies **the same distribution as original speech**

Solution: Learnable anonymizer on speaker embedding vector space

- **Distribution preservation** transformation
- **With constraints**



Experiments

We follow the VoicePrivacy challenge protocol to conduct the experiments

- **Privacy metrics (ASV-EER):** assess the ability to protect speaker identity in different scenarios
- **Utility metrics (Gvd):** assess the preservation of voice diversity, similarity between original and anonymized speech
- **Utility metrics (ASR-WER):** assess how well speech content is preserved in anonymized speech

