Speaker Anonymization using Orthogonal Householder Neural Network
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Speaker anonymization: Hide speaker identity (privacy) but keep other information (utility), e.g. linguistic Speaker privacy protection Q
content, speaker diversity, allowing anonymized speech is still useful for downstream tasks [1][2]. Anonymized speech sounds dissimilar from original speech to hide the
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OHNN-based anonymizer Experiments

Distribution-preserving transformation: Orthogonal Householder neural network: We follow the VoicePrivacy challenge protocol to conduct the experiments
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Interested in speaker anonymization?
The VoicePrivacy Challenge (VPC) 2024 is open. Welcome your contribution!
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