P5-08 **Exploring Isolated Musical Notes as Pre-training Data for** Predominant Instrument Recognition in Polyphonic Music

Lifan Zhong ¹, Erica Cooper ², Junichi Yamagishi ², Nobuaki Minematsu ¹ ¹ Graduate School of Engineering, The University of Tokyo, Japan

² National Institute of Informatics, Japan

Introduction

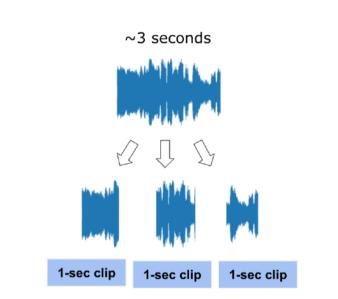
APSIPA ASC 2(23)

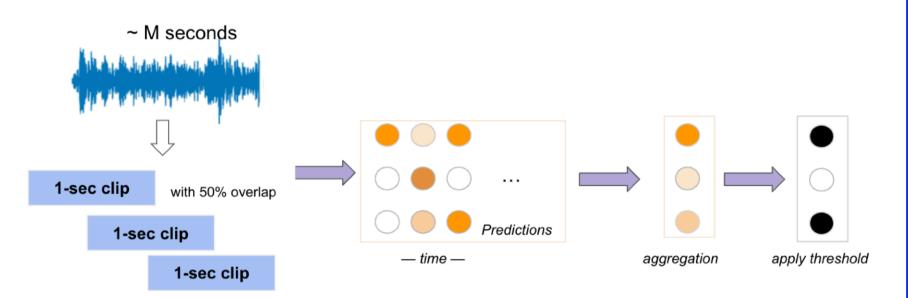
- Automatic instrument recognition has various applications in music recommendation, music transcription, etc.
- We propose a robust end-to-end instrument recognition system for polyphonic multi-instrument music, using isolated musical notes as pretraining data.

Predominant Instrument Recognition

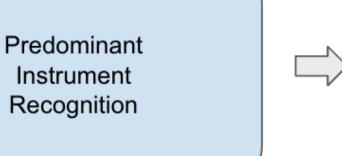
Experimental Settings

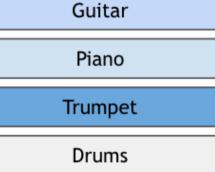
https://github.com/nii-yamagishilab/predominant-instrument-recognition





Testing





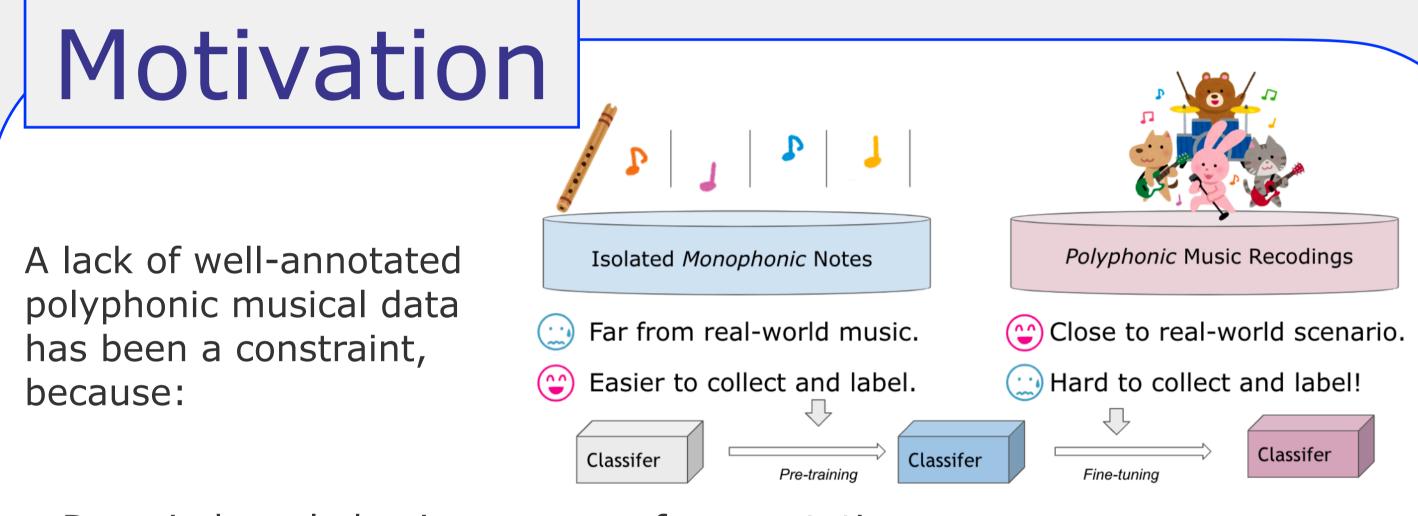
Bass

• Automatic recognition of the predominant or lead instrument(s)

Guitar

Trumpet

• Input music signals can be **polyphonic** and multi-instrumental



• Domain knowledge is necessary for annotation • Well-produced music recordings have copyright issues.

Monophonic sounds and isolated notes require relatively less effort to collect and label.

Training

- Divide input audio into 1-second clips
- Average the clip-wise predictions to get the segment-wise predictions

Evaluation Metrics

1. F1-score $F1 = \frac{2 \cdot \text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}} \quad P_{macro} = \frac{1}{L} \sum_{l=1}^{L} \frac{\text{TP}_l}{\text{TP}_l + \text{FP}_l}, \quad P_{micro} = \frac{\sum_{l=1}^{L} \text{TP}_l}{\sum_{l=1}^{L} (\text{TP}_l + \text{FP}_l)},$

2. LRAP (label ranking average precision)

Initialization

Random

NSynth

Ground Truth $~~y \in \{0,1\}^{n_{ ext{samples}} imes n_{ ext{label}}}$ Predictions $\hat{f} \in \mathbb{R}^{n_{ ext{samples}} imes n_{ ext{labels}}}$

$$\mathcal{L}RAP(y,\hat{f}) = rac{1}{n_{ ext{samples}}} \sum_{i=0}^{n_{ ext{samples}}-1} rac{1}{||y_i||_0} \sum_{j:y_{ij}=1} rac{|\mathcal{L}_{ij}|}{ ext{rank}_{ij}}$$

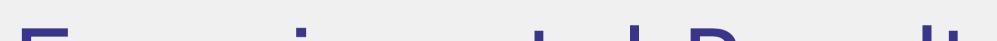
Need no threshold!

where $\mathscr{L}_{ij} = \{k : y_{ik} = 1, \hat{f}_{ik} \ge \hat{f}_{ij}\}$ and $\operatorname{rank}_{ij} = |\{k : \hat{f}_{ik} \ge \hat{f}_{ij}\}|$. $|\cdot|$ computes number of elements of the set and $|| \cdot ||_0$ computes the number of nonzero elements in a vector.

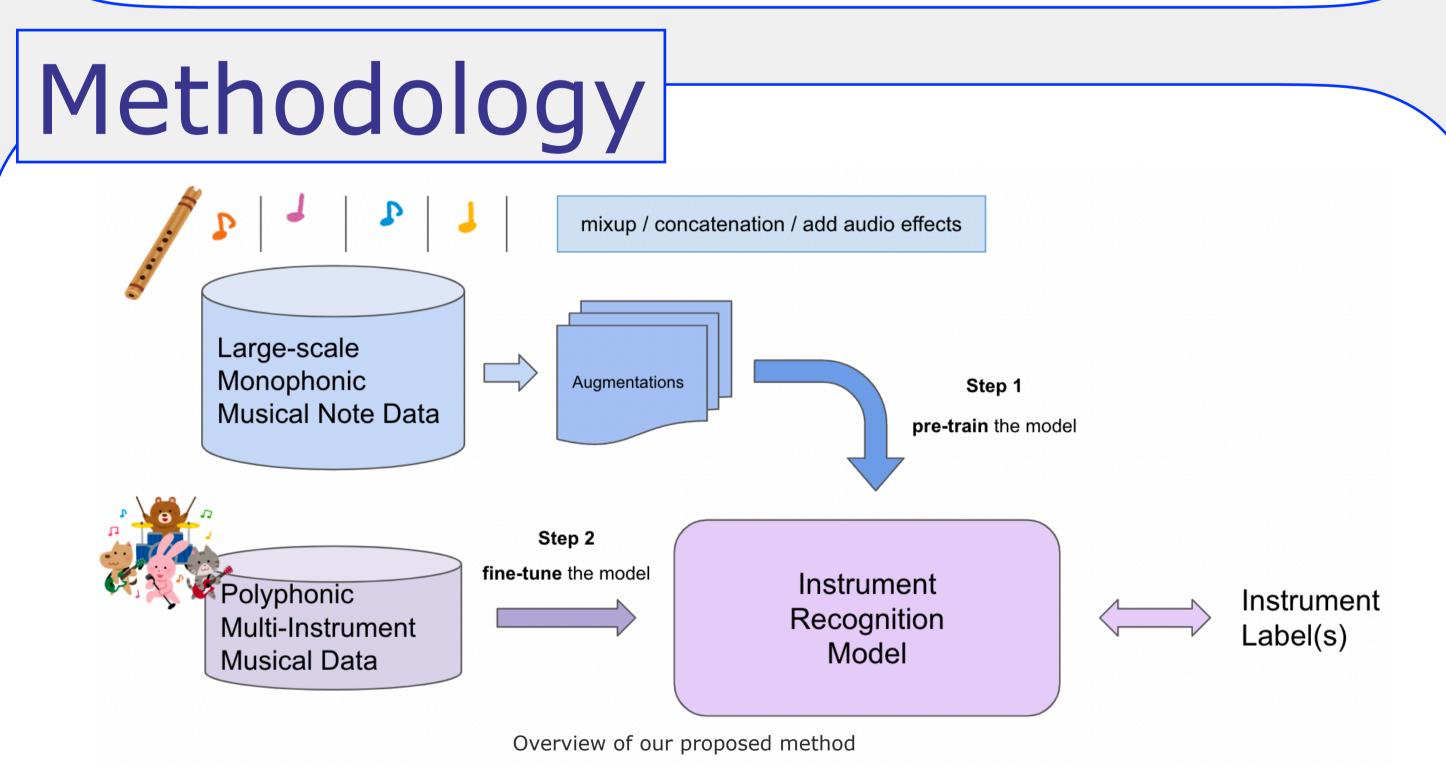
F1-micro

 0.634 ± 0.0075

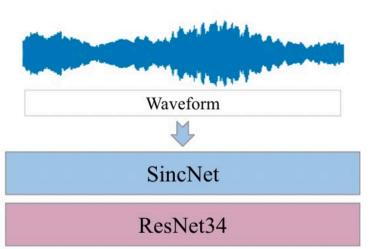
 0.674 ± 0.0068



=> Can we use isolated monophonic notes as pre-training data?



- **Augment** the monophonic musical note data by mix-up [Zhang+, 2017] [Tokozume+, 2017], concatenating, and adding effects, to alleviate the domain gap
- **Pre-train** the model with augmented monophonic musical note data.



Experimental Results

TABLE II TRAINING WITH RANDOM INITIALIZATION vs. WITH NSYNTH

PRE-TRAINING

F1-macro

 0.536 ± 0.0127

 0.584 ± 0.0068

LRAP

 0.780 ± 0.0057

 0.814 ± 0.0020

We rep	ort the	results	on	the
IRMAS	testing	g data.		

• NSynth pre-training strongly **improves** performance

Au • All augmentation techniques help, and **mixing two** samples with soft labels has the most impact

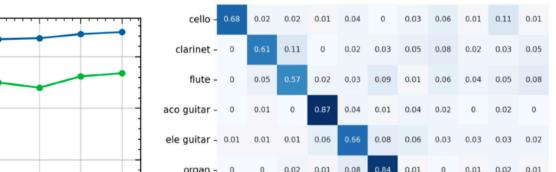
Ablations of Pre-training Augmentation Methods					
Augmentations	F1-micro	F1-macro	LRAP		
All	0.674 ± 0.0068	0.584 ± 0.0068	0.814 ± 0.0020		
- mixup	0.657 ± 0.0029	0.560 ± 0.0045	0.804 ± 0.0040		
- audio effect	0.671 ± 0.0031	0.576 ± 0.0055	0.812 ± 0.0030		
- both ^a	0.642 ± 0.0050	0.535 ± 0.0031	0.791 ± 0.0037		
- concatenation	0.670 ± 0.0012	0.576 ± 0.0015	0.813 ± 0.0013		

TABLE III

• Outperforms previous endto-end system by 0.066 in micro F1-score (**10.9%** relative improvement)

- Better performance than most previous methods that use time-frequency representations as inputs, except for [19], whose model has 25.5M parameters, while our model has **1.3M**
- NSynth pre-training helps regardless of the volume of

- both ^a	0.642 =	E 0.0050	0	$.535 \pm 0.003$	31	$0.791 \pm$: 0.0037
- concatenation	0.670 ± 0.0012		0	0.576 ± 0.0015		0.813 ± 0.0013	
^a Without mixup and audio effects							
TABLE IV							
COMPARISON OF EVALUATION RESULTS ON THE IRMAS TESTING DATA							
Methods		Features		F1-micro	F 1	-macro	LRAP
This work		Waveform	n	0.674		0.584	0.814
Avramidis <i>et al</i> . [18]		Waveform	n	0.608		0.543	0.747
Kratimenos <i>et al.</i> [4]		CQT		0.647		0.546	0.805
Zhong et al. [19] ^a		Mel		0.680		0.600	0.818
Reghunath & Raj	an [17]	Mel ^b		0.66		0.62	-
Yu et al. [16]		Mel		0.661		0.569	-
Pons <i>et al.</i> [15]		Mel		0.589		0.516	-
Han <i>et al</i> . [14] ^c		Mel		0.619		0.513	-



• **Fine-tune** the pre-trained model using polyphonic, multi-instrument musical recordings

	LDE
M	M
Classifier	Classifier
pre-train	fine-tune
Softmax + CE	Sigmoid + BCE

Instrument Recognition Model Architecture

fine-tuning data. However, ₩ 0.50 with pre-trained weights and 10% of IRMAS training data, 0.45 Pre-training using the NSynth datase we can train a reasonable Random initialization 30 40 50 60 70 80 90 100 model Portion of the IRMAS training data used (%)

0.65

0.55

rows are ground truth labe

Dataset

Pre-training: NSynth [J. Engel+, 2017]

TABLE I SUMMARY OF THE NSYNTH DATASET AND THE IRMAS DATASET

NSynth

1.006

305,979

4 seconds

340.0 hours

IRMAS - train

11

6,705

3 seconds

5.6 hours

IRMAS - test

11

2.874

5 - 20 seconds

13.5 hours

• Samples of instruments sustaining a note for 3s and letting it decay for 1s

Fine-tuning:	IRMAS	[Bosch+,	2012]	

• Professionally produced western music recordings of various genres, with excerpt-wise predominant instrument labels of 11 classes: cello (cel), clarinet (cla), flute (flu), acoustic guitar (gac), electric guitar (gel), organ (org), piano (pia), saxophone (sax), trumpet (tru), violin (vio), and human singing voice (voi)

Dataset

Instruments

Total duration

Duration per sample

Samples

Conclusion

- A pre-training and fine-tuning approach using monophonic isolated musical note data proves effective in predominant instrument recognition.
- Data augmentation techniques during pre-training contributes to the robustness of our model.
- Our best model achieves a micro F1-score of 0.674 and an LRAP of 0.814, marking a significant improvement of 10.9% and 8.9% relative to the previous end-to-end approach.