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Summary in one slide

J Extension of previous work (Vang 2023)

J Motivation: not use any spoofed training data from
text-to-speech or voice conversion

d Method

— Upstream SSL training, using vocoded VoxCeleb?2
— Downstream SSL fine-tuning, using vocoded ASVspoof19

L Our best overall results

Wang, Xin, and Junichi Yamagishi. “Spoofed Training Data for Speech Spoofing Countermeasure Can Be Efficiently Created Using Neural Vocoders.” 2
In Proc. ICASSP, 1-5. IEEE, 2023.




Introduction

A binary classification task

= Bona fide: human voice
= Spoofed: text-to-speech (TTS) or voice conversion (VC) voice

= Metric: equal error rate (EER)
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Introduction

. CM architecture in our studies (Wang 2022, Tak 2022)

* Front end: self-supervissed learning (SSL) model
« wav2vec 2.0 XLSR-53 (Conneau 2021)

= Back end: global average pooling + 4-layer neural network
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Conneau, Alexis, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli. “Unsupervised Cross-Lingual Representation Learning for
Speech Recognition.” In Proc. Interspeech, 2426-30. ISCA, 2021.
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Wang, Xin, and Junichi Yamagishi. “Investigating Self-Supervised Front Ends for Speech Spoofing Countermeasures.” In Proc. Odyssey, 100-106, 2022..



Generalization is desired
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eneralization is challenging

= Poor generalization (Pas 2020)

* Artefacts in high-frequency band (Wang 2022)

Das, R. K,, Yang, J. & Li, H. Assessing the scope of generalized countermeasures for anti-spoofing. in Proc. ICASSP 6589-6593 (2020). doi:10.1109/ICASSP40776.2020.9053086* From CQSPI
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ystem in Table 1&2 of (Das 2020)

Nicolas Miiller, Franziska Dieckmann, Pavel Czempin, Roman Canals, Konstantin Béttinger, and Jennifer Williams. Speech Is Silver, Silence Is Golden: What Do ASVspoof-Trained Models Really Rearn? In Proc. ASVspoof Challenge Workshop, 55-60.

doi:10.21437/ASVSPOOF.2021-9. 2021.
Xuechen Liu, Xin Wan

ArXiv:2210.02437.

Xin Wang, and Junichi Yamagishi. Investigating Self-Supervised Front Ends for Speech Spoofing Countermeasures. In Proc. Odyssey, 100—106. doi:10.21437/0Odyssey.2022-14. 2022.
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%,zl\z/ld Sahidullah, Jose Patino, Héctor Delgado, Tomi Kinnunen, Massimiliano Todisco, Junichi Yamagishi, Nicholas Evans, Andreas Nautsch, and Kong Aik Lee. ASVspoof 2081: Towards Spoofed and Deepfake Speech Detection in the Wild. ArXiv Preprint

EER >20%



Generalization may need more data
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Generalization may need more data

Training set

— —
P — —

ASVspoof 2019: A large-scale public database of synthesized, converted and replayed
speech
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Easier way to create useful spoofed training data?

= However, building diverse TTS and VC systems is time consuming



Idea: creating spoofed training data by vocoding
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Idea: creating spoofed training data by vocoding
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Idea: creating spoofed training data by vocoding
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Idea: creating spoofed training data by vocoding
d Assumption (ideally)
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N I I See actual embedding space in appendix 12



Idea: creating spoofed training data by vocoding

] Procedure

1. Prepare (or download) vocoders
2. Vocode the bona fide data
3. Train CM using bona fide and vocoded

data

@ { Vocoders ]

Bona
fide

—

—7 Ny

Vocoded
data

—

Training set

NII

©,

Vocoder

Jin0o0o0o0oooooohoomoD™ .. oUng

Acoustic feature extractor

13



Method: CM training using bona fide & vocoded data

d Previous work (Wang 2023)
ASVspoof 2019 LA trn.
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Contrastive feature loss is not plotted. 15
See slide appendix for more.



Method: CM training using bona fide & vocoded data

J

This work

VoxCeleb2 dev.
>0k hours |  Vocoded

Pre-trained ':D
XLSR-53

NII

Contrastive feature loss is not plotted.
See slide appendix for more.

ASVspoof 2019 LA trn.

m—
P —

—
—

LA19
vocoded

LA19

<100 hours
4 J:L )
CM
Fine-tuned B [
XLSR-53 Back end [ S;?rii,ym
\_ J
downstream fine-tuning
16



Method: CM training using bona fide & vocoded data
 This work — method 1
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Contrastive feature loss is not plotted. 17
See slide appendix for more.



Method: CM training using bona fide & vocoded data
 This work — method 2
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I I See slide appendix for more.



Method: CM training using bona fide & vocoded data

L Previous work (Wang 2023)

= Vocoded ASVspoof 2019 LA trn. |
= downstream fine-tuning of SSL model e ::{ e

 This work
= Vocoded VoxCeleb2 dev.
= Upstream training of SSL
= Downstream training + distillation
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 Related studies using DSP-based \J‘

vocoders (Wu 2013, Khoury 2014, Sizov unn
2015, Saratxaga 2016, Pal 2018)

N I I See related papers in slide appendix 20




Experiment

Training data Evaluation data
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d Training data

= SSL upstream training: vocoded VoxCeleb2 dev.
= Downstream fine-tuning: bonafide + vocoded ASVspoof 2019 LA trn.
= Vocoders: Hifi-GAN (Kong 2020) NSF (Wang 2019) NSF-GAN, WaveGlow (Prenger 2019)

dCM

Global Fully-
XLSR-53 average connected [— Score
pooing 4 layers

akaki, and Junichi Yamagishi. “Neural Source-Filter-Based Waveform Model for Statistical Parametric Speech Synthesis.” In Proc. ICASSP, 5916-20. |IEEE, 2019. 21

\I}\?ng, J)lé.ngig#agh eon Kim, and Jaekyoung Bae. “HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis.” In Proc. NIPS, 33:17022-33, 2020.
ang, Xin, Shinji
Prenger, Ryan, Rafael Valle, and Bryan Catanzaro. “WaveGlow: A Flow-Based Generative Network for Speech Synthesis.” In Proc. ICASSP, 3617-21, 2019.



Experiment

Training data Evaluation data
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1 Evaluation data
= ASVspoof 2019 LA test set, 2021 LA & DF eval sets
= ASVspoof 2019 LA test set non-speech removed, 2021 LA & DF hidden track
= \WaveFake (Frank 2021) , In-the-Wild (Maller 2022)

More challenging due
to domain mismatch
= three independent training-evaluation rounds
= averaged EERs

Joel Frank, and Lea Schonherr. WaveFake: A Data Set to Facilitate Audio DeepFake Detection. In Proc. NeurlPS Datasets and Benchmarks 2021. 2021.
Nicolas M Miller, Pavel Czempin, Franziska Dieckmann, Adam Froghyar, and Konstantin Béttinger. Does Audio Deepfake Detection Generalize? In Proc. Interspeech, 22
2783-2787. 2022.



Low EER W ) High EER

Experiment results

Systems using different training configurations

= ID Bl B2 B3 P1 P2 P3
O  Front end SSL(s) xlsr  xlsr, w2v  xlsr, w2v v.vox  xlsr, v.vox  xlsr, v.vox
SSL distilling = X v - X v

Data for fine-tune CM voc.LA voc.LA
— LA19eval 3.45 1.97 1.26 2.09 2.01 1.91
LA21eval 17.59 13.94 _ 16.88 14.94 15.92
DF21leval 6.53 4.04 14.72 4.34 5.28 5.67
LA19etrim 2.69 2.80 3.74 3.33 2.79 3.28
LA21hid 13.93 14.05 = 20.03 |  16.02 13.95 14.97
DF21hid 8.89 9.10 15.27 7.71 8.40 8.84
WaveFake 7.33 1.48 5.88 1.94 0.89 1.30
— InWild 6.78 4.25 13.20 5.84 4.07 6.10
Pooled EER Pooled 11.13 12.95 14.06 10.54 9.07 9.98

single threshold
23



Experiment results
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. ID B1 P1 P3
LA19eval 3.45 2.09 1.91
LA21eval 17.59 16.88 15.92
DF21leval 6.53 4.34 5.67
a LA19etrim | 269 D1 VS PT: 3.33 3.28
% LA21hid 13.93  continually 16.02 14.97
E DF21hid 8.89  trained SSL is 7.71 8.84
WaveFake 7.33 1.94 1.30
InWild 6.78 not useless 5.84 6.10
Pooled 11.13 — 10.54 9.98
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Experiment results
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Experiment results
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Experiment results

 Other results in the paper
= Using two SSLs without distillization?

= Downstream fine-tuning using vocoded
voxceleb2?

NII
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Summary
3 Method

» L arge scale vocoded VoxCeleb2
= Upstream SSL training
= Downstream fine-tuning + distilling

] Results

VoxCeleb2 dev.
vocoded
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R S
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= Slightly outperformed previous work (pooled EER)

NII
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Thank you

project/10-asvspoof-vocoded-trn-ssi

N I I https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/10-asvspoof-vocoded-trn-ss|
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https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/10-asvspoof-vocoded-trn-ssl

Appendix

= ID B1 B2 B3 P1 P2 P3 B1-b P3-b Bl-c P3-c
O Front end SSL(s) xlsr  xlsr, w2v  xlsr, w2v v.vox  xlsr, vivox  xlsr, v.vox xlsr  xlsr, v.vox xlsr  xlsr, v.vox
SSL distilling - X v - X v - v - v

Data for fine-tune CM voc.LA voc.LA LA19trn voc.VoxCel
LA19eval 3.45 1.97 1.26 2.09 2.01 1.91 0.22 0.13 3.59 3.71
LA21eval 17.59 13.94 21.09 16.88 14.94 15.92 2.69 3.29 15.22 12.37
DF21leval 6.53 4.04 14.72 4.34 5.28 5.67 4.27 3.45 5.99 3.31
® LA19etrim 2.69 2.80 3.74 3.33 2.79 3.28 7.37 7.37 2.74 3.63
% LA21hid 13.93 14.05 20.03 16.02 13.95 14.97 15.56 24.23 10.14 9.53
7 DF21hid 8.89 9.10 15.27 7.71 8.40 8.84 9.16 13.95 9.03 7.77
= WaveFake 7.33 1.48 5.88 1.94 0.89 1.30 23.75 15.44 13.41 24.17
InWild 6.78 4.25 13.20 5.84 4.07 6.10 13.52 12.32 6.90 7.00
Pooled 11.13 12.95 14.06 10.54 9.07 9.98 12.76 12.50 10.92 12.26
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