Background

The widely-used large-scale
multilingual VoxCeleb2 [1], with over 1
million utterances from nearly 7000
speakers, has become a standard ASV
benchmark, cannot be downloaded
from the official website [2] due to

.Can we create SynVox2 with fewer
.privacy concerns while maintaining
'utility and fairness?
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Speaker privacy protection
Anonymized speech sounds dissimilar
from original speech

Speaker diversity
Anonymized speech from the same
speaker has a unique speaker identity

Speech intelligibility and naturalness
Anonymized speech satisfies the same
distribution as original speech
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Ensuring privacy
Synthetic speaker identity is unlinkable to its original
identity

Requirements are similar -> use
language-robust OHNN-SAS [3]
to create SynVox2
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One Issue: OHNN-SAS, trained on
clean speech, cannot generate wild
VoxCeleb?2

Solution: Extract background sounds
and add them back to the speech.

Maintaining utility
ASV model trained on synthetic data are expected to
perform similarly to models trained using authentic data

Increasing fairness
Not disfavor any particular group in the test set, e.g.,
genders, dialects

SynVox2 Generation Methods and Experiments
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Q1: Do SynVox2 datasets protect speaker identity
information? -> Speaker privacy can be protected through

Fairness Disrepancy Rate (FDR): Given decision threshold 7,
the FDR considers the largest distance between false alarm
rates (FAR) and false reject rates (FRR) over multiple groups
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