Uncertainty as a Predictor: Zero-shot MOS Proxies

Aditya Ravuri^{UoC}

Erica Cooper^{NII} Junichi Yamagishi^{NII}

Introduction

Problem:

- A need for automatic prediction of audio quality (esp. in systhesis and conversion).
- Traditional metrics like Mean Opinion Scores (MOS) challenging to collect at scale & in low-resource settings, and suffer from sampling biases.
- Many prediction solutions use self-supervised (SSL) models as a core component.

Our Work:

- We show that SSL models such as wav2vec are capable of zero-shot prediction of MOS values.
- We show interesting insights, e.g. that handicapping models can increase their zero-shot performance.

Our hypothesis: SSL models, which were initially used for density estimation, can be used as out-of-data-distribution predictors, through their contrastive probabilities.

Wav2vec's loss is the negative log-probability of predicting a subsequent latent token as opposed to a random token from elsewhere in the audio. Such probabilities were used as data log densities (NCE).

Our approach: we calculate uncertainty measures (e.g. entropy) using an SSL model's contrastive probabilities. If these are high, the model must not be able to distinguish a signal from noise, and so, the signal must be of bad quality.

Main Results

Wav2Vec (and to a lesser extent Wav2Vec2) based UMs correlate highly with MOS values.

SRCC between UMs calculated using various base pre-trained models and MOS values show high correlations when wav2vec is used for zero-shot prediction of MOS values in English settings.

model	type	mean	max	sd	entropy
W2V	Large VQ				-0.70 -0.69
W2V2-ASR	base 960h	-0.46	0.51	0.52	-0.37

Further Insights

Handicapping wav2vec2 increases performance.

Dropping out features before encoding, and averaging outputs over many forward passes increases performance, by about 15% SRCC when the dropout prob. is around 75%.

UMs are highly correlated with intelligibility measures: transcripts can be generated using a pretrained wav2vec2 base model (which was used to calculate UMs) and an ASR head & language model. UMs share a 70% correlation with word error rates (WERs) computed using these transcripts.

Domain adaptive pretraining increases performance.

Doing a second round of pre-training of the English SSL models on target data of another language (e.g. Mandarin) can significantly increase zero-shot performance on that dataset, although this seems to be dependent on data distribution.

