Interspeech 2024 A4-O2.3 #442

Revisiting and Improving Scoring Fusion for Spoofing-aware Speaker Verification Using Compositional Data Analysis

Xin Wang , Tomi Kinnunen, Kong Aik Lee, Paul-Gauthier Noe, Junichi Yamagishi NII, JST PRESTO, UEF, PolyU, Inria

Summary in one slide

- Question: how ASV and spoofing countermeasure (CM) should be fused theoretically?
- Message: fusing ASV and CM != fusing ASVs (or CMs)
- Methods
 - Linear fusion of log likelihood ratios (LLRs)
 - Non-linear fusion of LLRs
- □ Results: both better than baseline, non-linear the best

Background: spoofing CM

protect human listeners

protect ASV

Background: spoofing CM protecting ASV

Background: spoofing-robust ASV (SASV)

Background: spoofing-robust ASV (SASV)

Background: spoofing-robust ASV (SASV)

□ baseline approach (Jung 2022)

□ baseline approach (Jung 2022)

? What to do if, say, $s_{\rm cm} \in [-100, 100] \ s_{\rm asv} \in [-1, 1]$

□ baseline approach (Jung 2022)

- ? What to do if, say, $s_{\rm cm} \in [-100, 100] \ s_{\rm asv} \in [-1, 1]$
- ? Why not normalize both, why summation ...

Any thoery to support the good pratice?

Answers by this work

☐ Fusion in SASV != fusion in ASV (or CM) ensemble (sec.2.1)

- Spoofing CM and ASV are dealing with different pairs of hypotheses
- A different theory is needed

Answers by this work

- ☐ Fusion in SASV != fusion in ASV (or CM) ensemble (sec.2.1)
 - Spoofing CM and ASV are dealing with different pairs of hypotheses
 - A different theory is needed

We explain the practice in this talk

- \Box Linear summation (Sec.2.2 2.4)
 - Bayesian decision theory + compositional data analysis
 - In practice: calibration + sum of CM and ASV LLRs
- □ Non-linear fusion (Sec.2.5)
 - Bayesian decision theory (arxiv appendix)
 - the "optimal" solution to minimize a decision cost
 - In practice: calibration & non-linear fusion

□ Score calibrations are needed

? Why normalize $s_{
m cm}$, not $s_{
m asv}$

- □ Score calibrations are needed
- □ LLRs should be summed

- ? Why normalize $s_{
 m cm}$, not $s_{
 m asv}$
- ? summation, product

- □ Score calibrations are needed
- □ LLRs should be summed

- ? Why normalize $s_{
 m cm}$, not $s_{
 m asv}$
- ? summation, product

Three data classes but binary decisions! (sec 2.2 and appendix)

$$s_{
m sasv} = \mathsf{IIr}^{\mathsf{tar.bf}}_{\mathsf{spf}}(oldsymbol{x}) + \mathsf{IIr}^{\mathsf{tar.bf}}_{\mathsf{non.bf}}(oldsymbol{x})$$
 $s_{
m cm} = \mathsf{IIr}^{\mathsf{tar.bf}}_{\mathsf{spf}}(oldsymbol{x}) - \mathsf{IIr}^{\mathsf{tar.bf}}_{\mathsf{non.bf}}(oldsymbol{x})$

□ Score calibration – nothing new

□ Score calibration – nothing new

Logistic regression

Generative calibration (Brummer 2014)

- 1. choose a parametric distribution
- 2. estimate distribution para. on dev. set
- 3. compute $\operatorname{IIr}_{\sf spf}^{\sf tar.bf}({m x}) = \log \frac{p(s_{\rm cm}|{\sf tar.bf})}{p(s_{\rm cm}|{\sf spf})}$

□ Score calibration – nothing new

- ☐ Is linear fusion optimal for decision making?
 - No

■ Non-linear fusion minimizes the cost

$$s_{\rm sasv} = -\log\left[(1-\rho)e^{-{\rm IIr_{non.bf}^{tar.bf}}} + \rho e^{-{\rm IIr_{spf}^{tar.bf}}}\right] \qquad \text{for Cfa=Cmiss}$$

See more in Sec2.5 & Appendix

Cost		\times
Bona fide matched	0	Cmiss
Bona fide unmatched	Cfa	0
Spoofed	Cfa	0

■ Non-linear fusion minimizes the cost

■ Non-linear fusion minimizes the cost

■ Non-linear fusion minimizes the cost

for Cfa=Cmiss

Asserted spoofing prior (Kinnuen 2023)

A general form of ASV $(\rho = 0)$ or $(\rho = 1)$

A general form of Gaussian fusion (Todisco 2018)

Demo on toy data set

Demo on toy data set

Demo on toy data set

Recap the practices

Linear fusion

$$s_{\mathrm{sasv}} = \mathsf{IIr}_{\mathsf{non.bf}}^{\mathsf{tar.bf}} + \mathsf{IIr}_{\mathsf{spf}}^{\mathsf{tar.bf}}$$

Non-linear fusion

$$s_{\text{sasv}} = -\log\left[(1-\rho)e^{-\mathsf{IIr}_{\text{non.bf}}^{\mathsf{tar.bf}}} + \rho e^{-\mathsf{IIr}_{\mathsf{spf}}^{\mathsf{tar.bf}}}\right]$$

□ Data

SASV 2022 challenge database, official protocols (Jung 2022)

□ Systems

- All use pre-trained ASV and CM from SASV 2022 B1 (Jung 2022)
- Systems differ in score calibration & fusion

☐ Misc

- Training & evaluation in six rounds
- Averaged results are reported

worse worse

better

ID	B1	B1c	L2	L2c	L3	L3c	B1v2	Post
Fusion	linear		linear		non-linear			
Calibration	×	\checkmark	×	\checkmark	×	√	×	×
SASV-EER (%) conf. ($\alpha = 5\%$)	20.46 ± 0.40	2.73 ± 0.27	3.31 ± 0.31	1.56 ± 0.23	1.44 ± 0.23	$\begin{array}{c c} 1.43 \\ \pm 0.23 \end{array}$	$\begin{array}{ c c } 1.60 \\ \pm 0.22 \end{array}$	1.55 ± 0.24
						<u> </u>	<u> </u>	
Cllr	2.17	1.09	1.04	0.14	0.18	0.16	0.96	0.84
$\operatorname{Cllr}_{\min}$	0.52	0.11	0.13	0.07	0.06	0.07	0.08	0.07
$Cllr_{calib}$	1.64	0.98	0.91	0.07	0.11	0.10	0.88	0.78
t-EER (%)	2.10	2.10	1.68	1.68	1.68	1.68	2.19	2.21
							1	

SASV-EER (Jung2022)

other metrics

Systems with different fusion & calibration methods

From other papers

ID	B1	B1c	L2	L2c	L3	L3c	B1v2	Post
Fusion	linear			linear				
Calibration	×	\checkmark	×	\checkmark				
SASV-EER (%)	20.46	2.73	3.31	1.56	1.44			
conf. $(\alpha = 5\%)$	± 0.40	± 0.27		± 0.23		± 0.23		

log.reg.

log.reg. + Gaussian calibration

baseline

good linear fusion

good linear fusion 31

bona fide matched **Experiments** bona fide unmatched spoofed 20 20 20 ASV score (calibrated) ASV LLR (calibrated) 10 10 10 ASV score -10-10-20 +-2020 -20-2020 20 CM score CM score (calibrated) CM LLR (calibrated) $= s_{\rm cm} + s_{\rm asy}$ $s_{ m sasv}$ $s_{ m sasv}$ $s_{\rm sasv}$ logistic reg. logistic reg. Gaussian + Gaussian + calibration calibration logistic reg. logistic reg. $s_{\mathrm{cm}} \in \mathbb{R}$ $s_{\mathrm{asv}} \in \mathbb{R}$ $o_{\rm cm}$ $\sigma_{\rm cm}$ CM **ASV** ASV CM ASV CM

baseline

good linear fusion

good linear fusion 32

bona fide matched **Experiments** bona fide unmatched spoofed 20 20 20 ASV score (calibrated) ASV LLR (calibrated) 10 10 10 ASV score 0 -10-10-20-20-2020 -2020 -2020 CM LLR (calibrated) CM score CM score (calibrated) Relative freq. Relative freq. Relative freq. 0.2 $s_{\rm sasv} = s_{\rm cm}$ $s_{ m asv}$ 0.20.10.0 +0.020 -2020 -2020 -20SASV score SASV score SASV score

ID	B1	B1c	L2	L2c	L3	L3c	B1v2	Post
Fusion				linear		non-liear	(Jung	(Zhang
Calibration			X	\checkmark	X	√	2022) ×	2022) ×
SASV-EER (%)			3.31	1.56	1.44	1.43	1.60	1.55
conf. $(\alpha = 5\%)$				± 0.23		± 0.23	± 0.22	± 0.24

good linear fusion

good nonlinear fusion

Main messages

- ☐ Fusion SASV != fusion of ASV or CM ensemble
- ☐ Linear and non-linear can be suppored by theory
- □ Calibration affects discrimination

Pointers

☐ Evaluation using the same Bayes decision cost

Hye-jin Shim, Jee-weon Jung, Tomi Kinnunen, Nicholas Evans, Jean-Francois Bonastre, and Itshak Lapidot. 2024. **a-DCF: an architecture agnostic metric with application to spoofing-robust speaker verification**. In Proc. Odyssey, 2024. 158–164. https://doi.org/10.21437/odyssey.2024-23

□ SOTA ASV is not robust to spoofing attacks

Jee-weon Jung, Xin Wang, Nicholas Evans, Shinji Watanabe, Hye-jin Shim, Hemlata Tak, Sidhhant Arora, Junichi Yamagishi, and Joon Son Chung. 2024. **To what extent can ASV systems naturally defend against spoofing attacks?** In Proc. Interspeech, 2024. .

A4-05.5

☐ The non-linear fusion has been used by many teams in ASVspoof 5 challenge

Thank you

Code & Jupyter notebook step-by-step explanation

Appendix theory in details

ASVspoof

□ A single ASV

☐ Fusing ASV, face recognition, and other biometrics

☐ CM and ASV are dealing with different hypotheses

☐ We have three classes of data in two separate hypothesis testings

 $\{H_{\text{fake}}, H_{\text{real-diff}}, H_{\text{real-match}}\}$

■ We have three classes of data in two separate hypothesis testings

 $\{H_{\text{fake}}, H_{\text{real-diff}}, H_{\text{real-match}}\}$

Simplex

$$\tilde{p}_2 = \frac{1}{\sqrt{6}} \left[\log \frac{p(\boldsymbol{E}|H_{\texttt{real-match}})}{p(\boldsymbol{E}|H_{\texttt{fake}})} + \log \frac{p(\boldsymbol{E}|H_{\texttt{real-match}})}{p(\boldsymbol{E}|H_{\texttt{real-diff}})} \right] \longleftarrow$$

vs

log likelihood ratio

vs 🥡

