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Abstract and Take-home Messages

= Main research question: How do we adjust the deepfake detection models to new unseen deepfake methods while
preventing catastrophic forgetting on old deepfakes?

= Our proposed idea in this poster: Automatically and actively select the small amount of additional useful data
suitable for the continuous training of deepfake detection models

= Take-home messages: The automatic selection of small additional useful data from a redundant large pool set using
the confidence score of the detection model is simple but useful and continuously trained deepfake detection
models have better performance than one without active data selection and than one using random selection

Active data selection and continuous training strategy of deepfake detection models
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Experiments: Continuous training of facial deepfake detection models

Facial deepfake detectors used in the experiments 225 A
= EfficientNet V2-M architecture pre-trained by ImageNet21k Base
= Ahead layer for binary prediction Additional data improves performance
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# of Images added to the master set
Percentage indicating from which dataset the image was selected in each iteration

AL-Cycle1 AL-Cycle2 AL-Cycle3 AL-Cycle4 AL-Cycle5 AL-Cycle6

Google DFD real _ 17.0% _ 14.6% . 3.0% - 6.5% . 4.7% - 14.8%
KoDF real - 3.2% I 0.5% - 71% I 0.6% | % I 1.9%
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YouTube DF fake 9.0% 7.0% 4.5% 1.3% 2.9% 1.3%

StableDiffusion fake 19.0% 0.2% 15.3% 0.2% 0.3% 0.4%
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