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4.1. Datasets & Backbones
Datasets
• Seen: GAN-based deepfakes (2 real & 6  popular 

deepfake datasets)
• Unseen: Diffusion-based deepfakes (Țânțaru et al.)

Backbones:
• ConvNets vs. ViTs.
• Supervised vs. self-supvervised.
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Table 1. Backbones used in the experiments.
Backbone Architecture Way of training Dataset(s) Images Annotations
EfficientNetV2 Large [47] ConvNet Supervised ImageNet-21K [15] 14M Image classes
DeiT III L/16-LayerScale [50] Transformer Supervised ImageNet-21K [15] 14M Image classes

EVA-02-CLIP-L/14 [44] Transformer Supervised LAION-2B [43] &
COYO-700M [2] 2B Image-text pairs

MAE ViT-L/16 [20] Transformer Self-supervised ImageNet-1K [15] 1.3M Not used
DINO (various versions) [5] Transformer Self-supervised ImageNet-21K [15] 14M Not used
DINOv2 (various versions) [36, 13] Transformer Self-supervised LVD-142M [36] 142M Not used

Table 2. Sizes of the main training, validation (val), and test (seen)
sets, inspired by Nguyen et al. [34], and of the unseen validation
and test sets from T, ânt,aru et al. [57].

Type Real Fake Total
Training 44,037 55,963 100,000
Validation 13,200 13,000 26,200
Test 10,000 11,000 21,000
Validation (unseen) 1,900 10,700 12,600
Test (unseen) 900 3,600 4,500

sizes to ensure equitable and informative comparisons. De-
tailed specifications are provided in Tab. 1.

For ConvNets’ representative, we opted for Efficient-
NetV2 [47] due to its robust architecture and the popular-
ity of its predecessor in the forensics community. For su-
pervised ViTs, we selected two well-known models: DeiT
III [50] (having the same architecture as DINO, using the
conventional class labels annotation) and EVA-CLIP [44]
(an enhanced version of the renowned CLIP [37], using
multimodal image-text pairs annotation). For SSL ViT, we
chose DINOs [5, 36, 13] and MAE [20], focusing more on
DINOs for simplicity. We utilized the official pre-trained
weights provided by the authors.

4.2. Datasets
We followed the data design of Nguyen et al. [34] by

gathering a variety of images generated or manipulated by
various deepfake methods to construct the main datasets.
The details of the training, validation, and test sets are
shown in Tab. 2. The datasets were designed to be balanced
regarding the ratio of real and fake images and the number
of images per training method, and were guaranteed not to
overlap.

Real images were gathered from the VidTIMIT [42],
VoxCeleb2 [10], FaceForensics++ (FF++) [41], Google
DFD [18], Deepfake Detection Challenge Dataset
(DFDC) [16], and Celeb-DF [31] datasets. One part
of the fake images comprised images gathered from the
FF++, Google DFD, Celeb-DF, DFDC, DeepfakeTIMIT
(DF-TIMIT) [29], and YouTube-DF (YT-DF) [30] datasets.
The other part were images generated by various GANs,
including StarGAN [7], StarGAN-v2 [8], RelGAN [54],
ProGAN [24], StyleGAN [25], and StyleGAN2 [26].

Table 3. Performances of four conventional classifiers on various
DINO and DINOv2 architectures.

ViT
backbone

DINO
version

PCA +
k-means k-NN Linear MLP

(2 layers)
S/8 1 58.69 69.88 65.69 76.98
S/16 1 58.90 70.01 73.10 80.10
S/14 2 60.15 71.07 77.06 77.21
S/14-Reg 2 59.63 69.88 74.16 77.99
B/8 1 59.25 70.79 78.40 81.83
B/16 1 58.53 70.96 67.23 81.07
B/14 2 55.25 69.67 75.84 77.62
B/14-Reg 2 54.90 69.36 77.67 76.29

For cross-dataset evaluation, we used the dataset con-
structed by T, ânt,aru et al. [57], which contains images gen-
erated or manipulated by diffusion-based methods. It is im-
portant to note that our training and validation sets (main
dataset) above do not contain any diffusion images. The
list of diffusion-based methods used here includes Percep-
tion Prioritized (P2) [6], Repaint-P2 [6, 57], Repaint-Latent
Diffusion Model (LDM) [40, 57], Large Mask Inpainting
(LaMa) [45], and Pluralistic [56].

Regarding the roles of the subsets, we used the training
set for training or fine-tuning models and the validation sets
for hyper-parameter selection, including the selection of the
best checkpoints and determination of the EER thresholds,
which were then used for testing. The test sets were used
for evaluation and comparison.

4.3. Metrics
We used some or all of the following five to measure the

performance of the detectors: classification accuracy, true
positive rate (TPR), true negative rate (TNR), equal error
rate (EER), and half total error rate (HTER).

5. Results and discussion
In this section, we first discuss Approaches 1 and 2 in

Sections 5.1 and 5.2, respectively. We compare the per-
formances among different architectures and versions of
DINO, as well as between DINOs versus ConvNets and
other ViTs. Additionally, we implement improvements and
conduct ablation studies on the best-performing architec-
tures to gain further enhancements and insights. Next, we
evaluate selected models on the unseen test set in Sec. 5.3.
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TABLE I
BACKBONES USED IN THE EXPERIMENTS.

Backbone Architecture Way of training Dataset(s) Images Annotations
EfficientNetV2 Large ConvNet Supervised ImageNet-21K 14M Image classes
DeiT III L/16-LayerScale Transformer Supervised ImageNet-21K 14M Image classes

EVA-02-CLIP-L/14 Transformer Supervised LAION-2B &
COYO-700M 2B Image-text pairs

MAE ViT-L/16 Transformer Self-supervised ImageNet-1K 1.3M Not used
DINO (various versions) Transformer Self-supervised ImageNet-21K 14M Not used
DINOv2 (various versions) Transformer Self-supervised LVD-142M 142M Not used

Țânțaru, Dragoș-Constantin, Elisabeta Oneață, and Dan Oneață. "Weakly-supervised Deepfake Localization in Diffusion-generated Images." In WACV 2024.

4.2. Seen Dataset
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Table 6. Comparison between different ConvNet and transformer architectures on the seen test set. For Approach 1, the final setting in
Tab. 5 was applied. k denotes the number of final blocks utilized for feature extraction in Approach 1 while signifies the number of
fine-tuned blocks in Approach 2. Accuracies were calculated using a threshold of 0.5.

Model k FF++
Real

FF++
DF

FF++
F2F

FF++
FS

FF++
NT

FF++
FSh

DFD
Real

DFD
Fake

Vid-
TIMIT

DF-
TIMIT

Vox-
Celeb2

YT-
DF

DFDC
Real

DFDC
Fake

GANs Acc. EER HTER

Approach 1
EfficientNetV2 Large 4 60.90 84.70 83.40 79.50 75.30 83.50 61.00 85.50 59.75 67.90 92.62 67.40 54.00 71.60 95.55 78.50 21.71 21.62
DeiT III L/16-LayerScale 4 38.80 88.00 87.10 81.60 82.20 82.70 37.60 92.00 93.45 39.90 99.68 53.10 57.20 62.20 95.70 79.96 19.77 19.96
EVA-02-CLIP-L/14 4 50.40 97.40 90.80 93.20 80.80 90.30 44.50 97.20 83.30 66.40 99.82 31.90 57.10 83.90 99.90 83.30 16.51 16.77
MAE ViT-L/16 4 47.20 97.50 93.70 94.20 91.00 97.70 54.20 98.40 91.75 71.90 99.70 85.00 53.70 82.90 99.90 88.06 11.90 12.14
DINOv2 ViT-L/14-Reg 4 72.40 94.60 87.00 89.30 76.50 89.40 69.40 98.30 96.80 46.20 99.70 67.30 77.70 76.00 99.85 87.42 11.98 12.41
Approach 2
EfficientNetV2 Large 1 65.00 94.60 89.00 89.30 84.10 90.50 22.90 91.50 99.20 60.40 99.16 62.50 72.40 68.90 97.25 84.75 15.05 15.22
DeiT III L/16-LayerScale 1 56.90 97.00 89.50 89.90 84.10 86.50 33.40 95.00 96.35 18.60 99.08 56.50 66.40 79.00 97.25 82.64 17.21 17.28
EVA-02-CLIP-L/14 1 53.50 97.50 92.70 92.40 83.30 92.40 62.40 98.80 96.55 62.90 99.26 82.20 64.00 84.60 99.00 88.29 11.77 11.77
MAE ViT-L/16 1 68.60 98.10 91.70 94.20 85.70 91.90 64.50 97.20 96.00 71.30 99.70 75.10 72.30 84.70 98.45 89.65 10.34 10.35
DINOv2 ViT-L/14-Reg 1 75.60 97.20 92.80 94.80 81.60 93.40 30.80 99.60 99.75 62.70 99.74 76.90 74.90 86.10 99.85 88.78 11.32 11.26
MAE ViT-L/16 15 80.50 99.20 94.10 93.50 90.30 95.80 77.60 99.70 99.70 77.30 99.92 85.10 81.50 84.20 99.25 93.16 6.88 6.81
DINOv2 ViT-L/14-Reg 11 85.10 98.60 94.30 95.40 89.70 97.20 67.50 99.60 99.85 92.40 99.86 86.80 88.10 89.00 99.65 94.38 5.63 5.64

We applied the optimal configuration on the selected
backbones and then compared their performances. The re-
sults are displayed in Tab. 6. DINOv2 and MAE clearly
outperformed EfficientNetV2 and DeiT III, and it surpassed
EVA-CLIP despite the latter’s pre-training on a larger
dataset with rich annotations (image-text pairs). Between
the two SSL models, MAE was slightly better than DI-
NOv2. These results underscore the advantage of using SSL
for pre-training, enabling the learning of superior represen-
tations applicable to multiple tasks.

5.2. Approach 2: Fine-tuning final transformer
blocks

We fine-tuned the last blocks (and the tokens in the case
of transformers) of the selected backbones and compared
their performances. Details are shown in Tab. 6. Compared
to Approach 1, all backbones gained better results, with
EVA-CLIP being the closest competitor with the SSL back-
bones. Nevertheless, DINOv2 and MAE remained the top
performers. To narrow its gaps with DINOv2 and MAE,
EVA-CLIP would need to be pre-trained with a vast dataset
featuring rich annotations—a costly endeavor compared to
DINOv2 and MAE, which was pre-trained on a substan-
tially smaller dataset without any annotations. Given the
same architecture (DeiT III versus DINOv2 and MAE), the
performance gaps are significant, thanks to the training re-
ceipts. Overall, these results again underscore the signifi-
cant advantage of using SSL for pre-training ViTs.

Next, we conducted an ablation study to determine the
optimal number of k final blocks required for fine-tuning. It
is important to note that different ViT backbones have vary-
ing numbers of blocks; for example, DINOv2 - ViT-L/14-
Reg has 24 blocks. The results are visualized in Fig. 2.
If k is small, the model may not adapt adequately to the
new task, resulting in underfitting. Conversely, a large k
can lead to overfitting, especially with a small fine-tuning
dataset. For DINOv2, the optimal k is about half of the to-
tal blocks (11), while for MAE, it is three-fifths (15). The
EERs decreased from 11.32% to 5.63% (-5.69%) for DI-

Figure 2. Ablation study on the relationship between the number
of fine-tuned transformer blocks (k) and the EER in Approach 2.

NOv2 and from 10.34% to 6.88% (-3.46%) for MAE. When
fine-tuning only the last block, MAE had about 1% better
performance compared to DINOv2. However, with the opti-
mal k blocks, DINOv2 surpassed MAE, improving by about
2% compared to MAE’s 1%.

Regarding the breakdown of results for both ap-
proaches, the real parts of FF++, Google DFD, DF-TIMIT,
YouTube-DF, and DFDC are the most challenging subsets
for detection. This difficulty may be due to the low quality
of the deepfake media and diversity of deepfake methods in
these subsets. Low quality can destroy artifacts, making de-
tection harder. Fine-tuning with optimal k blocks improved
performance for Approach 2, but the real part of Google
DFD still remained the most challenging.

5.3. Cross-dataset detection
In this experiment, we assessed the generalizability of

the detectors in detecting unseen deepfakes. The scenario
presented a robust challenge, as there were no diffusion im-
ages in the training set. The classification thresholds were
recalibrated using the unseen validation set. The results are
presented in Tab. 7. Notably, there were drops in the perfor-

• Distributions of real videos are diverse à False positives.

• Approach 2 (partial fine-tuning) is better than approach 1 
(frozen backbone with adaptor).

• SSL ViTs > Supervised ViTs > Supervised ConvNets

• Fine-tuning about ½ of DINOv2 gives the optimal performances.

4.3. Unseen Dataset
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Table 7. Comparison of performance between various ConvNet and transformer architectures on the unseen test set, comprising images
generated or manipulated by diffusion-based methods. k denotes the number of final blocks utilized for feature extraction in Approach 1
while signifies the number of fine-tuned blocks in Approach 2.

Model k Threshold Real Repaint
P2

Repaint
LDM

LaMa Pluralistic Acc. TPR TNR EER HTER

Approach 1
EfficientNetV2 Large 4 0.6355 47.89 52.89 55.78 49.11 56.67 52.47 47.89 53.61 49.22 49.25
DeiT III L/16-LayerScale 4 0.9983 52.89 52.67 56.44 44.44 52.67 51.82 52.89 51.56 47.83 47.78
EVA-02-CLIP-L/14 4 0.0737 63.44 43.00 52.44 31.22 51.22 48.27 63.44 44.47 45.75 46.04
MAE ViT-L/16 4 0.9385 56.00 53.22 62.78 19.33 64.67 51.20 56.00 50.00 47.31 47.00
DINOv2 ViT-L/14-Reg 4 0.0759 60.44 53.00 66.89 43.11 70.89 58.87 60.44 58.47 40.67 40.54
Approach 2
EfficientNetV2 Large 1 0.5479 63.00 50.22 53.89 65.78 64.89 59.56 63.00 58.69 39.58 39.15
DeiT III L/16-LayerScale 1 0.9999 56.00 58.56 69.56 39.56 69.56 58.64 56.00 59.31 42.56 42.35
EVA-02-CLIP-L/14 1 0.9999 45.44 71.11 83.44 12.22 82.11 58.87 45.44 62.22 45.20 46.17
MAE ViT-L/16 1 0.1769 65.44 47.11 58.22 13.67 71.00 51.09 65.44 47.50 44.22 43.53
DINOv2 ViT-L/14-Reg 1 0.9980 50.78 70.22 78.22 65.00 86.78 70.20 50.78 75.06 36.28 37.08
MAE ViT-L/16 15 0.8948 69.89 50.78 68.89 22.56 76.44 57.71 69.89 54.67 37.56 37.72
DINOv2 ViT-L/14-Reg 11 0.7418 70.22 53.22 73.22 93.00 74.56 72.84 70.22 73.50 27.61 28.14

mance of all models, with the best one going from 11.32%
to 27.61% in terms of EER. Overall, Approach 2 consis-
tently outperformed Approach 1. Within Approach 2, Ef-
ficientNetV2 exhibited better generalizability compared to
other supervised pre-trained transformers.

DINOv2 is the absolute winner and clearly outperformed
MAE. This can be explained by the SSL pre-training phase;
DINOv2 employs strong data augmentations, while MAE
uses little or none, making MAE less robust against unseen
distributions. These results indicate that having the right
SSL training strategy greatly enhances deepfake detection
performance and is crucial for improving the generalizabil-
ity of the backbone.

5.4. Visualization and explainability

With Approach 2, we can naturally visualize the focus
areas of the ViT-based models using attention weights. To
simplify the process, we computed the average of the atten-
tion maps from all attention heads directed toward the CLS
token. We chose DINOv2 - ViT-L/14-Reg and randomly se-
lected images per category for visualization to avoid cherry-
picking. The results are depicted in Fig. 3. To highlight
the efficacy of fine-tuning, we compared the outcomes with
those of the corresponding frozen original model. The par-
tially fine-tuned model primarily directed its attention to the
forehead, eyes, nose, and mouth to assess the authenticity of
the input image. This behavior closely mirrors human intu-
ition in deepfake detection, as deepfake artifacts frequently
manifest in these regions. Notably, the original version of
DINO did not possess this ability. Even when presented
with unseen deepfakes, the fine-tuned model consistently
prioritized these areas. This explains the model’s failure
to detect deepfakes generated by Repaint-LDM, where the
modification occurs in the hair region. In summary, such
visualizations play a crucial role in deepfake detection, en-

hancing the interpretability of the results. The partially fine-
tuned DINO model excelled in this regard.

6. Conclusion and future work
In this study, we explored two strategies for utilizing SSL

pre-trained ViTs–specifically DINOs and MAE–as feature
extractors for deepfake detection. The first approach in-
volved utilizing frozen ViT backbones to extract multi-level
features, while the second approach entailed partial fine-
tuning on the final k blocks. Through extensive experimen-
tation, we found that with a suitable SSL pre-training strat-
egy, the fine-tuning approach demonstrated superior per-
formance and interpretability, particularly through attention
mechanisms to visualize the focused areas. Our findings
provide valuable insights for the digital forensic community
regarding the utilization of SSL pre-trained ViTs as feature
extractors, a relatively underexplored area in the literature
of deepfake detection.

Future work will primarily concentrate on forensic lo-
calization using DINOs without utilizing segmentation
ground-truths during training. Additionally, efforts will be
directed toward enhancing the generalizability of the mod-
els and exploring the potential of SSL on unlabeled deep-
fake datasets.
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• Most of the behaviors are similar to those on the seen dataset.

• DINOv2 is the absolute winner

• SSL DINO: employs strong data augmentations à More robust to unseen deepfake.

• SSL MAE:  use little or no data augmentations à Less robust.

• However, generalizability is still a challenging problem!
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• Most deepfake detectors use ConvNets as feature extractors.

• The community is hesitant to use large ViTs:

• Need extensive data to train.

• Suboptimal generalization with small- and medium-size datasets.

• Recently, ViTs trained with SSL strageries demonstrated remarkable 
performances:

• Robust feature extractors à Applicable for deepfake detection?

• Explicit semantic segmentation à Explanation & localization?

• Strong transfer learning across various downstream tasks à 
Better generalizability?

DatasetsBackbones
Seen dataset: A mixture of

• 2 real datasets & real parts of DF datasets.

• 6 popular GAN-based deepfake datasets.

Unseen dataset: Diffusion-based deepfakes 
dataset (Țânțaru et al.)

Size & structure:

Results on seen dataset

Table 1. Backbones used in the experiments.
Backbone Architecture Way of training Dataset(s) Images Annotations
EfficientNetV2 Large [47] ConvNet Supervised ImageNet-21K [15] 14M Image classes
DeiT III L/16-LayerScale [50] Transformer Supervised ImageNet-21K [15] 14M Image classes

EVA-02-CLIP-L/14 [44] Transformer Supervised LAION-2B [43] &
COYO-700M [2] 2B Image-text pairs

MAE ViT-L/16 [20] Transformer Self-supervised ImageNet-1K [15] 1.3M Not used
DINO (various versions) [5] Transformer Self-supervised ImageNet-21K [15] 14M Not used
DINOv2 (various versions) [36, 13] Transformer Self-supervised LVD-142M [36] 142M Not used

Table 2. Sizes of the main training, validation (val), and test (seen)
sets, inspired by Nguyen et al. [34], and of the unseen validation
and test sets from T, ânt,aru et al. [57].

Type Real Fake Total
Training 44,037 55,963 100,000
Validation 13,200 13,000 26,200
Test 10,000 11,000 21,000
Validation (unseen) 1,900 10,700 12,600
Test (unseen) 900 3,600 4,500

sizes to ensure equitable and informative comparisons. De-
tailed specifications are provided in Tab. 1.

For ConvNets’ representative, we opted for Efficient-
NetV2 [47] due to its robust architecture and the popular-
ity of its predecessor in the forensics community. For su-
pervised ViTs, we selected two well-known models: DeiT
III [50] (having the same architecture as DINO, using the
conventional class labels annotation) and EVA-CLIP [44]
(an enhanced version of the renowned CLIP [37], using
multimodal image-text pairs annotation). For SSL ViT, we
chose DINOs [5, 36, 13] and MAE [20], focusing more on
DINOs for simplicity. We utilized the official pre-trained
weights provided by the authors.

4.2. Datasets
We followed the data design of Nguyen et al. [34] by

gathering a variety of images generated or manipulated by
various deepfake methods to construct the main datasets.
The details of the training, validation, and test sets are
shown in Tab. 2. The datasets were designed to be balanced
regarding the ratio of real and fake images and the number
of images per training method, and were guaranteed not to
overlap.

Real images were gathered from the VidTIMIT [42],
VoxCeleb2 [10], FaceForensics++ (FF++) [41], Google
DFD [18], Deepfake Detection Challenge Dataset
(DFDC) [16], and Celeb-DF [31] datasets. One part
of the fake images comprised images gathered from the
FF++, Google DFD, Celeb-DF, DFDC, DeepfakeTIMIT
(DF-TIMIT) [29], and YouTube-DF (YT-DF) [30] datasets.
The other part were images generated by various GANs,
including StarGAN [7], StarGAN-v2 [8], RelGAN [54],
ProGAN [24], StyleGAN [25], and StyleGAN2 [26].

Table 3. Performances of four conventional classifiers on various
DINO and DINOv2 architectures.

ViT
backbone

DINO
version

PCA +
k-means k-NN Linear MLP

(2 layers)
S/8 1 58.69 69.88 65.69 76.98
S/16 1 58.90 70.01 73.10 80.10
S/14 2 60.15 71.07 77.06 77.21
S/14-Reg 2 59.63 69.88 74.16 77.99
B/8 1 59.25 70.79 78.40 81.83
B/16 1 58.53 70.96 67.23 81.07
B/14 2 55.25 69.67 75.84 77.62
B/14-Reg 2 54.90 69.36 77.67 76.29

For cross-dataset evaluation, we used the dataset con-
structed by T, ânt,aru et al. [57], which contains images gen-
erated or manipulated by diffusion-based methods. It is im-
portant to note that our training and validation sets (main
dataset) above do not contain any diffusion images. The
list of diffusion-based methods used here includes Percep-
tion Prioritized (P2) [6], Repaint-P2 [6, 57], Repaint-Latent
Diffusion Model (LDM) [40, 57], Large Mask Inpainting
(LaMa) [45], and Pluralistic [56].

Regarding the roles of the subsets, we used the training
set for training or fine-tuning models and the validation sets
for hyper-parameter selection, including the selection of the
best checkpoints and determination of the EER thresholds,
which were then used for testing. The test sets were used
for evaluation and comparison.

4.3. Metrics
We used some or all of the following five to measure the

performance of the detectors: classification accuracy, true
positive rate (TPR), true negative rate (TNR), equal error
rate (EER), and half total error rate (HTER).

5. Results and discussion
In this section, we first discuss Approaches 1 and 2 in

Sections 5.1 and 5.2, respectively. We compare the per-
formances among different architectures and versions of
DINO, as well as between DINOs versus ConvNets and
other ViTs. Additionally, we implement improvements and
conduct ablation studies on the best-performing architec-
tures to gain further enhancements and insights. Next, we
evaluate selected models on the unseen test set in Sec. 5.3.

• Performances on some real sets are poor because of false positives:

• Distributions of real videos are diverse.

• Low-quality deepfake videos à Artifacts are destroyed à Decision boundary moved.

• Approach 2 (partial fine-tuning) is better than approach 1 (frozen backbone with adaptor).

• SSL ViTs > Supervised ViTs > Supervised ConvNets.

• Fine-tuning about ½ of DINOv2 gives the optimal performances.

DINO:
Self-distilation with no labels

(Caron et al. 2021) 

MAE:
Predicting masked patches

(He et al. 2022)

CLIP:
Constrastive image-text pairs

(Radford et al. 2021) 

Overview:
• Approach 1: Generalized form of the recent DFD approaches.
• Approach 2: Leveraging the strong transferability & segmentation 

of SSL ViTs.
Comparative study:
• ConvNets vs. ViTs.
• Supervised vs. unsupervised.
• Frozen backbone with adaptor vs. partial fine-tuning.

Adaptor Partial fine-tuning

• Most of the behaviors are similar to 
those on the seen dataset.

• DINOv2 is the absolute winner

• SSL DINO: employs strong data 
augmentations à More robust to 
unseen deepfake.

• SSL MAE:  use little or no data 
augmentations à Less robust.

• However, generalizability is still a 
challenging problem!

Conclusion:
• Backbone: SSL ViTs are better than supervised ConvNets 

• An appropriate SSL training strategy is needed (DINOv2 is better 
than MAE).

• Partial fine-tuning the backbone is better than using adaptors 
with a frozen backbone.

Future work:
• Improve deepfake localization with the self-attention mechanism 

(without grond truth).

• Explore SSL on unlabeled deepfake datasets.

• Improve generalizability.

Results on unseen dataset


