

AfriHuBERT: A self-supervised speech representation model for African languages

Motivation

- ► Self-supervised learning (SSL) speech representation models are important component of various speech-related systems
- African languages remain relatively underrepresented in existing SSL models
- Multilingual SSL models like w2v-BERT 2.0, and XEUS perform well across languages and tasks but are large
- Can we build a compact SSL model for African languages?

Research questions

- Can massively pretrained mHuBERT-147 effectively generalize to African languages (to have AfriHuBERT)?
- 2 Can pre-training from scratch be effective using mHuBERT-147 targets without refinement?

Dataset for Pre-training

- We aggregate data from 11 major sources
- Combining these data sources return audio samples for 1,435 languages
- We exclude languages with less than 20m of audio, to have 1,226 African languages
- We include Arabic, English, French, and Portuguese from MMS ulab v2 only
- Only about 64 languages had more than 10 hours of audio samples

Name	#Langs.	Dur. (h)	Domain	Туре	License
BibleTTS	6	357.6	Religious	Read	CC BY-SA 4.0
CSRC	3	0.1	General	Radio	CC-BY
Jesus Dramas	88	99.6	Religious	Read	CC BY-NC-SA 4.0
Kallaama	3	124.9	Agriculture	Spontaneous	CC BY-SA 4.0
MCV	4	1606.1	General	Read	CC-0
MMS ulab v2	1230	2835.4	Religious	Read	CC BY-NC-SA 4.0
NaijaVoices	3	1873.9	General	Read	CC BY-NC-SA 4.0
NCHLT	10	1889.4	General	Read	CC BY 3.0
Nicolingua	10	142.4	News	Radio	CC BY-SA 4.0
VoxLingua107	13	886.4	General	Spontaneous	CC BY 4.0
Zambezi Voice	5	176.0	General	Radio	CC BY-NC-ND 4.0

Datasets used for training AfriHuBERT.

AfriHuBERT: Pretraining Setup

- We train 3 variants of AfriHuBERT

AfriHuBERT variants: S (from-scratch), N (MAFT with new clusters), O (MAFT with original clusters).

AfriHuBERT: Training and Evaluation

- Adaptation and training done for 100K steps
- ► All models were fine-tuned and evaluated on Spoken LID and ASR using the Sub-Saharan African subset of FLEURS
- ► We also include English, Arabic, French and Portuguese
- Pretraining with Fairseq, evaluation with SpeechBrain
- ► As baseline, we compare to both small (African-centric) and large SSL models
- Evaluation covers only 2% of training languages

- We aggregate 10K hours of speech from 1,200+ African languages to build a compact SSL model, AfriHuBERT
- AfriHuBERT benefits from mHuBERT-147's multilingual foundation and multilingual religious data
- 3 AfriHuBERT outperforms similar-sized SSL models on speech tasks and competes with larger ones
- 4 FLEURS transcriptions require auditing and corrections

Results: SLID & ASR

Models	Size	Dur	SLIE) (F1)↑	ASR	(WER)
	(M)	M(h)	avg*	avg	avg*	avg
Small SSL						
mHuBERT-147	95	9e-2	88.0	85.8	50.4	52.1
SSA-HuBERT	95	6e-2	89.6	0.88	56.6	56.2
AfriHuBERT-s	95	1 e -2	93.2	92.0	54.2	52.9
AfriHuBERT-o	95	1 e -2	90.3	88.9	48.4	49.3
AfriHuBERT-n	95	1 e -2	91.6	90.0	47.9	48.7
Large SSL						
w2v-XLSR	317	4.4e - 1	80.3	78.2	46.2	49.4
MMS	317	4.9e - 1	86.3	85.6	45.6	48.0
XEUS	577	1.1e + 1	96.2	95.5	46.5	49.5
w2v-BERT 2.0	580	4.5 e +1	92.7	91.3	35.5	39.3

Performance of the SSL models on FLEURS. We report the average F1 (%) and WER (%) scores for all languages (avg_{*}), and 21 African languages (avg).

- ► mHuBERT-147 is a strong, compact, multilingual SSL baseline
- ► MAFT on mHuBERT-147 using primarily religious speech improved performance on all 21 African languages
- ightharpoonup New pseudo-labels ightharpoonup Slight gain in AfriHuBERT performance over the original

Error Analysis of SLID outputs

- We inspected the AfriHuBERT's SLID confusion matrix
- Geographically close languages (e.g., Xhosa–Zulu, Fulfulde-Wolof-Hausa) are often misclassified as each other

Error Analysis of ASR outputs

Groundtruth Transcription: won se ikede naa leyin ti trumpi ba aare toki resep tayipi edogani lori ago

When diacritized: wón se ìkéde náà léyìn tí trumpi bá à àre toki resep tayipi edogani lórí ago

Translation: they made the announcement after trump had president toki resep tayipi edogani on a phone call

AfriHuBERT: wón se ìkéde náà leyìn tí tromp b are toki recept tayipà èdògáni lórí ago

FLEURS groundtruth transcriptions are inaccurate for Yoruba.

Can we trust our results? Yes! 😂

Multi-dialect ASR performance comparison on YORÙLECT (comparing 3 Yorùbá dialects.).

Saarland University INTERSPEECH, 2025