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(a) Pre-trained Multi-speaker TTS System

» Experimental Setup

] Dataset: Japanese CSJ dataset

] Speaker attributes #: 26

 Train: 2672 speakers

] Test: 30 speakers

] Objective Evaluation:
J FAD score

J Subjective Evaluation:

] Naturalness MOS

] Speaker attribute impression MOS

on a 5-point rating scale (each

sample is rated 8 times by different
raters)

(b) Prompt-Driven TTS System (Ours)

Table 2: FAD score and Naturalness MOS results on the CSJ
evaluation set.
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» Objective Evaluation and Naturalness Moss

System FAD Score  Naturalness MOS
ground-truth - 4.06 = 0.25
Discriminative (w/o LoRA) 11.217 3.15 = 0.25
Discriminative (w/ LoRA) 5.244 3.45 +0.19
Flow-Matching (w/ LoRA) 3.559 3.52 +0.26
Discriminative + Flow-Matching 3.126 3.50 = 0.24

» Correlation between the Impression MOS from Reference Speech and Generated Speech

Table 1: Spearman Rank Correlation Coefficient (SRCC) between MOS scores from reference and synthesized speech.

Scenario  System Speaker Attribute
expressiveness  confidence  relaxation  voice.depth  age  energy pitch speed clarity | Avg
Discriminative (w/o LoRA) 0.72 0.53 0.48 0.75 0.86 0.71 0.89 0.89 0.23 0.67
Seen Discriminative (w/ LoRA) 0.71 0.69 0.65 0.83 0.90 0.76 0.94 0.85 0.37 0.74
Flow-Matching (w/ LoRA) 0.68 0.53 0.66 0.76 0.79 0.50 0.86 0.38 0.22 0.60
Discriminative + Flow-Matching 0.74 0.71 0.75 0.87 0.96 0.72 0.90 0.68 0.35 0.74
Discriminative (w/o LoRA) 0.04 0.05 0.46 0.38 0.67 0.29 0.73 0.57 -0.37 | 0.31
Unseen Discriminative (w/ LoRA) 0.54 0.38 0.49 0.48 0.77 0.25 0.81 0.36 041 0.50
Flow-Matching (w/ LoRA) -0.10 0.12 0.32 0.42 0.82 0.39 0.74 0.14 0.21 0.34
Discriminative + Flow-Matching 0.36 0.08 0.49 0.35 0.74 0.34 0.75 0.37 0.20 0.41

underline: The statistical significance (p-value) is less than 0.001, indicating the MOS scores of synthetic speech are significantly correlated with the MOS scores

of reference speech.

] The Discriminative method enables the model to better follow the prompt's description
] The generative method significantly contributes to producing high-fidelity speech
. Combining both methods can achieve good results in terms of both speech quality and adherence to the prompt.

(b) Generative Method

[ The generative method significantly contributes to producing high-fidelity speech



