

To what extent can ASV systems naturally defend against spoofing attacks?

<u>Jee-weon Jung</u>*, Xin Wang*, Nicholas Evans, Shinji Watanabe, Hye-jin Shim, Hemlata Tak, Siddhant Arora, Junichi Yamagishi, Joon Son Chung

Motivation

- Current speaker verificaiton systems are vulnerable towards spoofing attacks
- Speech deepfake and spoofing detection field is growing

- What if the advancements in speaker verification systems naturally lead to spoofing-robust verification systems?
 - If yes, less need for speech anti-spoofing research?

Goal

- Investigate the trajectory of spoofing-robustness across speaker verification systems through time
 - If speaker verification systems are gaining spoof-robustness, estimate the speed of development
 - Confirm if different spoofing attacks pose different amount of threats

Metric

• SPF-EER

- An estimation on how good a speaker verification system is at rejecting spoofed inputs
- An evaluation protocol comprising target and spoof trials is used

	SV-EER	SPF-EER
Target	+	+
Non-target	-	
Spoof		-

Speaker verification systems

- 1. GMM-UBM
- 2. i-vector
- 3. x-vector
- 4. ECAPA-TDNN

- 5. MFA-Conformer
- 6. SKA-TDNN
- 7. RawNet3
- 8. WavLM-Large+ECAPA

Spoofing attacks

TTS

TTS

TTS

TTS

A02

- 29 attacks from ASVspoof 2015 and ASVspoof 2019 logical access
 - Covers TTS and VC systems (not replay)

NLP + DNN

NLP + HMM-DNN

NLP + RNN-GAN

DNN(end2end)

Group	ID	Type	Acoustic model	Waveform model		A05	VC	VAE	WORLD
	A18	VC	i-vector + PLDA	LPC		A17	VC	VAE	waveform filtering
	S 5	VC	GMM	MLSA		A13	TTS	TTS + VC(DNN)	waveform filtering
	A06	VC	GMM			A09	TTS	NLP + RNN	Vocaine
	A19	VC	GMM	spectral filtering	2	A14	TTS	TTS + VC(DNN)	STRAIGHT
	S 2	VC	Linear reg.	STRAIGHT		A03	TTS	NLP + DNN	WORLD
	S 1	VC	DTW	STRAIGHT		A02	TTS	NLP + HMM-DNN	WORLD
I	S6	VC	GMM + GV	STRAIGHT		A07	TTS	NLP + RNN-GAN	WORLD
	S 7	VC	GMM + GV	STRAIGHT		A11	TTS	DNN(end2end)	Griffin-Lim
	S 3	TTS	NLP + HMM	STRAIGHT		A08	TTS	NLP + HMM-DNN	Dilated CNN
	S4	TTS	NLP + HMM	STRAIGHT	3	A01	TTS	NLP + HMM-DNN	WaveNet
	S 8	VC	GMM-tensor	STRAIGHT		A12	TTS	NLP + RNN	WaveNet
	S9	VC	DTW + Kernel reg.	STRAIGHT		A15	TTS	TTS + VC(DNN)	WaveNet
	A05	VC	VAE	WORLD		A10	TTS	DNN(end2end)	WaveRNN
	A17	VC	VAE	waveform filtering		S10			
	A13	TTS	TTS + VC(DNN)	waveform filtering	4	A04	TTS	NLP + Unit-selection	Waveform concat.
	A09	TTS	NLP + RNN	Vocaine		A16	115	1121 Olit beleetion	, a voioim concut.
2	A14	TTS	TTS + VC(DNN)	STRAIGHT		7110			

WORLD

WORLD

Griffin-Lim

WORLD WAV Lab

Corpora

- VoxCelebs 1&2 development sets
 - 7,205 speakers / 2.5k+ hours of speech
 - Used for training speaker verification models
- Vox1-O protocol
 - 40 speakers / 37k+ trials
 - Used for assessing speaker verification performance (SV-EER)
- ASVspoof 2019 logical access evaluation set
 - 48 speakers / 68k+ utterances

General result – speaker verification

- Speaker verification systems are achieving zero-shot spoofing-robustness
 - Yet, the development of speech generation technologies outpaces

Results across different groups — speaker verification

- SSL-based model achieves the be performance on average, but does not guarantee better spoofing-robustness across all groups
- RawNet3 was most effective against Group 4 attacks
- i-vector has mixed tendency on different groups

Results on TTS/VC & DNN/non-DNN

- VC attacks are easier to detect for speaker verification systems
- DNN-based attacks are more harder to detect

General result – viewpoint of attacks

• Group 1 is the easiest and Group 4 is the hardest to detect

8/20/24

Chronological results on attacks

• More recent attacks are harder to detect

8/20/24 CMU-LTI WAV Lab

Takeaways

- Speaker verification systems are gaining zero-shot robustness against spoofing attacks
- The pace of advancement is slower than that of speech generation technology
- More recent attacks are harder to detect
- We need more effort on speech deepfake detection/anti-spoofing and spoofing-robust automatic speaker verification (SASV)!!

