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Music Performance Synthesis

Objective: Generating expressive piano performances 
from symbolic music representations (e.g., MIDI).

Objective Metrics and Subjective Evaluation

Challenges
❏ Difficulties in accurately aligning scores, performance MIDI, 

and recorded audio.
❏ Challenges in precisely adjusting dynamics, articulation, and 

timing variations.
❏ Limited adaptability to unseen compositions, instruments, and 

recording environments.

Related Works
Expressive Performance Rendering (EPR): 

❏ RNNs, GNNs, GANs, Diffusion models.
❏ Transformer-based models (MIDI tokenisation)

Expressive Performance Synthesis (EPS): 

❏ Differentiable Digital Signal Processing (DDSP) models
❏ Adaptation from Text-to-Speech (TTS) models

Integrated System:

❏ MIDI-DDSP: Multi-instrument, monophonic
❏ Deep Performer: Violin, Piano (EPS only)

Propose Method

Scan for Paper Scan for Demo

Expressive Performance Rendering (EPR)

Expressive Performance Synthesis (EPS)

Score MIDI Performance MIDI Audio Performance

Fine-tuned M2A
❏ ATEPP(>700h, >10000 recordings):transcribed MIDIs
❏ Maestre (~200h, ~1300 recordings): recorded MIDIs
❏ Bridge the knowledge gap between to improve the synthesis 

quality

Baseline
❏ Similar to M2A model, input replaced by score MIDI
❏ We used the fine-tuned M2A to initialise the training, and further 

trained the baseline model with audio and score MIDI pairs 
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Proposed System (Two-Stage) Baseline (Single-Stage)

M2M Model (Improvements)
❏ Reduced Vocabulary and Model Parameter Size: 

❏ Adapted Octuple tokenisation method, 
❏ Used lower beat resolution to reduced 

vocabulary size 
❏ Segmented MIDI into 256-note sequences

❏ Enhanced Pianist Identity Representation: 
Identity embeddings were summed with the last 
hidden state

❏ Improved Performance Generation: 
❏ Predicted actual note durations instead of 

deviations.
❏ Used probabilistic loss and sampling 

techniques to enhance output variety.

❏ Effectively reconstructs IOI and velocity; duration prediction needs improvement.

❏ Segmenting performances into 256-note sequences had no negative effect on generation quality.

❏ Lower correlation in segments suggests full-performance assessments may overlook local 
inconsistencies.

❏ Fine-tuning the M2A model improved synthesis, 
reducing MIDI spectrogram distortion and 
enhancing ambient sound.

❏ The fine-tuned M2A model showed lower key 
accuracy than Pianoteq, but better captured 
nuanced performance details. 

❏ The baseline model struggled with pitch 
reconstruction.

❏ M2M model (S2) is more expressive than 
scores (S4) but less than human 
performances (S1) and generalizes well to 
unseen compositions.

❏ Fine-tuned M2A model (S7) had lower 
ratings than the original M2A (S6), excelling 
in ambient sound but also reproducing 
noise and inaccuracies.

❏ The two-stage system (S3) outperformed 
the single-stage baseline (S5).

Conclusion
❏ The two-stage system (M2M + fine-tuned M2A) enhances human-like expressiveness and 

preserves acoustic ambience, outperforming baseline models.
❏ Limitations include inconsistent acoustic ambience across full performances.
❏ Future work will focus on pedalling prediction, Chromagram loss, and improving performance 

across different environments and styles.
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