Continual Subjective Evaluation Method of Speech by Merging Sort-based **Preference Tests Towards Ever-Expanding Corpus of Human** Ratings

Yusuke Yasuda* Junichi Yamagishi*, and Tomoki Toda**
*National Institute of Informatics, **Nagoya University

Motivation

- Large-scale subjective rating corpora emerged.
 - Targeting to training corpus for automatic quality prediction.
- Current limitation of corpus construction for subjective ratings:
 - High cost and limited size
 - Scores are context-dependent
 - Requirement to single-shot experiment
- How can we enlarge subjective corpus step-by-step?
 - →Continual subjective evaluation

Continual Subjective Evaluation: Task Definition

- Rank systems by solving a loop of two subproblems:
- (1) sorting subsets of systems in the quality order
- (2) merging the subsets of sorted systems into a single ranking.

Experiment 3

Continual Subjective Evaluation: Challenges

- (1) Divisibility: Evaluations must be divided into several experiments to add systems at different time points;
- (2) Consistency: The derived ranking from multiple evaluations should be consistent;
- (3) Cost-efficiency: Cost efficiency is required for evaluations to be continual up to a large-scale system set.

Continual Subjective Evaluation: Limitations of existing methods

MOS:

- XScores are not consistent across different experiments evaluating different system sets.
- \circ \rightarrow (1) Single-shot requirement: experiments can not be divided or merged.
- \circ \rightarrow (2) Ranking consistency is not expected.
- Cost efficient.

Preference:

- Cost inefficient due to the huge number of pair combinations.
- $\circ \rightarrow$ (3) Not scalable to a large number of systems.
 - Normally, about 5 pairs are evaluated.
- Relative scores.
- →(1), (2) Can derive a consistent ranking even if evaluation is divided into several experiments.

Contributions

- We define the continual subjective evaluation as a new subjective evaluation task that can expand systems to evaluate over time;
- We propose a method to realize the continual subjective evaluation based on preference tests and merge- and sort-based online learning;
- We conduct an iteration of the continual subjective evaluation in three experiments to derive a ranking of 60 systems;
- Our experiments show that our method can realize the continual subjective evaluation by deriving a ranking of 60 systems efficiently from preference tests evaluating 216 pairs.

Proposed Method

Proposed Method: Preference Evaluation with Online

Learning

 Sorting and merging algorithm are integrated with listening test system.

- Pairs are selected based on the algorithms.
- Minimum evaluations to rank are allocated.

Algorithm for merging: MERGE

- Based on merge algorithm but stochastic.
- Merging two sorted sets S1 and S2.
- O(|S1| + |S2|)
 pair complexity to rank.

Algorithm MERGE

```
Input: Sorted sets S_1, S_2, bias \epsilon, confidence \delta.
Initialize: i = 1, j = 1 and O = \emptyset.
  while i \leq |S_1| and j \leq |S_2| do
       if S_1(i) = \text{COMPARE}(S_1(i), S_2(j), \epsilon, \delta) then
           append S_2(j) at the end of O and j = j + 1.
       else
           append S_1(i) at the end of O and i = i + 1.
       if i \leq |S_1| then
           append S_1(i:|S_1|) at the end of O.
       if j \leq |S_2| then
           append S_2(j:|S_2|) at the end of O.
```

Output: Sorted set O

Algorithm for sorting (1): MERGE-RANK

- Based on merge-sort algorithm but stochastic version.
- Divide and conquer approach.
- O(|S|log|S|) pair complexity to sort.

Algorithm MERGE-RANK

Input: Set S, bias ϵ , confidence δ .

 $S_1 = \text{MERGE-RANK}(S(1:\lfloor |S|/2 \rfloor), \epsilon, \delta)$

 $S_2 = \text{MERGE-RANK}(S(\lfloor |S|/2 \rfloor + 1 : |S|), \epsilon, \delta)$

Output: $MERGE(S_1, S_2)$

Algorithm for sorting (2): INSERT-RANK

- Based on insert-sort algorithm but stochastic version.
- Incremental approach.
- O(|S|) pair complexity to sort at the best case.
- O(|S|^2) pair complexity to sort at the worst case.

Algorithm INSERT-RANK

Input: Set S, bias ϵ , confidence δ . Initialize: i = 1, j = 2.

for
$$j=2,\ldots,|S|$$
 do $i=j-1$

while i > 0 AND COMPARE $(S(i), S(j), \epsilon, \delta) = S(i)$

do

Insert in place
$$S(i+1) \leftarrow S(i)$$

 $i = i-1$
Insert in place $S(i+1) \leftarrow S(j)$

Output: Sorted set S

Algorithm for winner determination: COMPARE

- Listener preferences are stochastic.
- Sorting and merging algorithm need to know a winner of a pair to rank.
- COMPARE algorithm
 determines a winner from
 preferences with at most
 error bias ε and error
 probability δ.

Algorithm COMPARE

Input: element pair i, j, bias ϵ , confidence δ .

Initialize: $\hat{p}_{ij} = \frac{1}{2}, m = \frac{1}{2\epsilon^2} \log \frac{2}{\delta}, r_{ij} = 0, w_{ij} = 0.$

Define: $\hat{c}(r) = \sqrt{\frac{1}{2r} \log \frac{4r^2}{\delta}} \text{ if } r > 0 \text{ else } \frac{1}{2}.$

Define: $\hat{\epsilon}(r, \hat{p}) = \hat{c}(r) - |\hat{p} - \frac{1}{2}|$.

while $\epsilon \leq \hat{\epsilon}(r_{ij}, \hat{p}_{ij})$ and $r_{ij} \leq m$ do

Compare *i* and *j*. **if** *i* wins, $v_{ij} = 1$ **else** $v_{ij} = 0$. $w_{ij} = w_{ij} + v_{ij}, r_{ij} = r_{ij} + 1, \hat{p}_{ij} = \frac{w_{ij}}{r_{ij}}$.

if $\hat{p}_{ij} \leq \frac{1}{2}$ Output: winner j else Output: winner i

Algorithm for winner determination: COMPARE

The worst case

The best case

Experimental Evaluation

Experimental settings

- Dataset: BVCC (VoiceMOS Challenge 2022)
- TTS systems in Blizzard Challenge, Voice Conversion Challenge, and more.
- Top 60 systems are selected.
- Divided into two subsets: odd and even rank set bases on MOS ranking
- Three experiments are conducted.
- Experiment 1: sorting the set 1 (30 systems)
- Experiment 2: sorting the set 2 (30 systems) and merging set 1 and 2 partially (10 systems)
- Experiment 3: merging the rest of set 1 and 2 (50 systems)
- Speech samples were evaluated on naturalness via crowdsourcing.

Experiment No.	1	2	3
Sort Algorithm	Insert Rank	Merge Rank	-
Merge Algorithm	-	Merge	Merge
#Sort Systems	30	30	-
#Merge Systems	-	10	50
#Scores in Budget	24,960	24,960	15,540
#Convergence Cost	14,977	19,658	9,761
#Evaluated Pairs	70	98	48
#Significant Pairs	28	49	21
#Max Cost per Pair	528	413	465
#Min Cost per Pair	219	60	127

Table 1: Settings and results of three experiments.

Results: Overview

- 60 systems were ranked with our method.
 - The continual subjective evaluation was feasible.
- Other findings:
 - Sorting and merging can be seamlessly evaluated with MERGE-RANK and MERGE
 - INSERT-RANK was more efficient than MERGE-RANK.
 - INSERT-RANK was less performant than MERGE-RANK for crowdsourcing.

Experiment No.	1	2	3
Sort Algorithm	Insert Rank	Merge Rank	-
Merge Algorithm	-	Merge	Merge
#Sort Systems	30	30	-
#Merge Systems	-	10	50
#Scores in Budget	24,960	24,960	15,540
#Convergence Cost	14,977	19,658	9,761
#Evaluated Pairs	70	98	48
#Significant Pairs	28	49	21
#Max Cost per Pair	528	413	465
#Min Cost per Pair	219	60	127

Table 1: Settings and results of three experiments.

Results: Ranking

- We obtained similar ranking to MOS:
- Kendall's tau: 0.798
- Spearman correlation coefficient: 0.943

- However, our ranking was not exactly same as MOS.
- Possible reasons:
- Lack of statistical differences in many pairs in BVCC corpus.
- Contraction bias in MOS.
- Our method can be used for detail evaluation.

Results: Preference distributions

- Pairs with similar quality were selectively evaluated.
- Diagonal region: pairs with similar scores.
- Off-diagonal region: pairs with different scores.

Results: Evaluation cost distribution

- Pairs with similar scores were evaluated many times.
- Pairs with different scores were evaluated few times.

Results: Evaluation error distribution.

- All pairs achieved errors below the threshold.
- Many pairs had near zero evaluation errors.

Definition of evaluation error: overlap of confidence intervals.

Conclusion

- This study defined a continual subjective evaluation of speech to keep expanding systems and scores in a subjective evaluation corpus
- We proposed our method to realize the continual subjective evaluation based on preference-based online learning.
- Future works:
 - Application to the automatic quality evaluation.
 - Application to other media evaluation than speech.