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Motivation

e Large-scale subjective rating corpora emerged.
o Targeting to training corpus for automatic quality prediction.
e Current limitation of corpus construction for subjective ratings:
o High cost and limited size
o Scores are context-dependent
o Requirement to single-shot experiment
e How can we enlarge subjective corpus step-by-step?
o —Continual subjective evaluation



Continual Subjective Evaluation: Task Definition

Experiment 1 Experiment 2
e Rank systems by
solving a loop of [“@‘] [““J
two subproblems: Perference Sort Perference Sort
e (1) sorting subsets Test ’ or Test ’ Oof
of systems in the ‘
quality order ‘ ‘ @ @ ‘ ‘ ‘
_ ~ @ —
e (2) merging the Perference M
subsets of sorted Ranking e ’ erge

systems into a @

single ranking.
Experiment 3




Continual Subjective Evaluation: Challenges

e (1) Divisibility: Evaluations must be divided into several experiments to add
systems at different time points;

e (2) Consistency: The derived ranking from multiple evaluations should be
consistent;

e (3) Cost-efficiency: Cost efficiency is required for evaluations to be continual
up to a large-scale system set.



Continual Subjective Evaluation: Limitations of existing
methods

e MOS:

Y Scores are not consistent across different experiments evaluating different system sets.
—(1) Single-shot requirement: experiments can not be divided or merged.

—(2) Ranking consistency is not expected.

o [4Cost efficient.

e Preference:
o X Cost inefficient due to the huge number of pair combinations.
o —(3) Not scalable to a large number of systems.
m  Normally, about 5 pairs are evaluated.
o [Y4Relative scores.
o —(1), (2) Can derive a consistent ranking even if evaluation is divided into several
experiments.

o O O



Contributions

e \We define the continual subjective evaluation as a new subjective evaluation
task that can expand systems to evaluate over time;

e \We propose a method to realize the continual subjective evaluation based on
preference tests and merge- and sort-based online learning;

e \We conduct an iteration of the continual subjective evaluation in three
experiments to derive a ranking of 60 systems;

e Our experiments show that our method can realize the continual subjective
evaluation by deriving a ranking of 60 systems efficiently from preference
tests evaluating 216 pairs.



Proposed Method



Proposed Method: Preference Evaluation with Online
Learning

Sorting and merging
algorithm are
integrated with
listening test system.
Pairs are selected
based on the
algorithms.

Minimum evaluations
to rank are allocated.
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Algorithm for merging: MERGE

Based on merge
algorithm but
stochastic.
Merging two
sorted sets S1
and S2.

O([S1] + [S2])
pair complexity to
rank.

Algorithm MERGE

Input: Sorted sets S1, Sz, bias €, confidence §.
Initialize: i = 1,7 = 1 and O = 0.
while : < |S1|and j < |S2| do
if S1(¢) = COMPARE(S1(%),S2(4),€,6) then
append S2(j) at the end of O and j = j + 1.

else
append S1(¢) at the end of O and ¢ = 7 + 1.

if i < |S1| then

append S1 (¢ : |S1]) at the end of O.
if 7 < |S2| then

append S2(j : |S2|) at the end of O.

Output: Sorted set O




Algorithm for sorting (1): MERGE-RANK

e Basedon Algorithm MERGE-RANK

merge-sort
algorithm but

Input: Set S, bias €, confidence 0.
stochastic version. S1 = MERGE-RANK(S5(1 : |[|5]/2]),€,0)

e Divide and S2 = MERGE-RANK(S([|S]/2] +1:15]),¢,9)
conquer approach. Output: MERGE(S1, S2)

e O(|S|log|S|) pair
complexity to sort.
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Algorithm for sorting (2): INSERT-RANK

e Basedon Algorithm INSERT-RANK
inSGFF-SOFt Input: Set S, bias €, confidence .
algorithm but Initialize: s = 1,j = 2.
stochastic version. for i — 2 Sl d
e Incremental or‘?—.,...,| | o
approach. b=g—d
e O(S|) pa while i > 0 AND COMPARE(S(3),S(j),€,6) = S(4)
pair do

complexity to sort . . .
at the best case. Insert in place S(i 4+ 1) < S(%)

¢ O(S["2) pair 1=1—1
complexity to sort Insert in place S(i + 1) < S(y)

at the worst case. Output: Sorted set S
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Algorithm for winner determination: COMPARE

Listener preferences are
stochastic.

Sorting and merging
algorithm need to know a
winner of a pair to rank.
COMPARE algorithm
determines a winner from
preferences with at most
error bias € and error
probability O.

Algorithm COMPARE

Input: element pair ¢, j, bias €, confidence J.
Initialize: ]37;3' = %, m = L log %, Tij; = 0 y Wij = 0.
Define: ¢(r) = \/ = log “= 1f'r > 0 else 3
Define: €(r,p) = ¢é(r) — |p
while € < é(r;;,pi;) and r;; < mdo
Compare 7 and j. if ¢ wins, v;; = 1 else Vij = 0.
Wij = Wij + Vij,Tij = Tij + 1,Pi5 = —2

sz

if p;; < 3 Output: winner j else Output: winner i
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Algorithm for winner determination: COMPARE

1.0 System i
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Experimental Evaluation
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Dataset: BVCC (VoiceMOS
Challenge 2022)

TTS systems in Blizzard
Challenge, Voice Conversion
Challenge, and more.

Top 60 systems are selected.
Divided into two subsets: odd and
even rank set bases on MOS
ranking

Three experiments are conducted.
Experiment 1: sorting the set 1 (30
systems)

Experiment 2: sorting the set 2 (30
systems) and merging set 1 and 2
partially (10 systems)

Experiment 3: merging the rest of
set 1 and 2 (50 systems)

Speech samples were evaluated
on naturalness via crowdsourcing.

Experimental settings

Experiment No. 1 2 3
Sort Algorithm Insert Rank  Merge Rank -
Merge Algorithm - Merge Merge
#Sort Systems 30 30 -
#Merge Systems - 10 50
#Scores in Budget 24,960 24,960 15,540
#Convergence Cost 14,977 19,658 9,761
#Evaluated Pairs 70 98 48
#Significant Pairs 28 49 21
#Max Cost per Pair 528 413 465
#Min Cost per Pair 219 60 127

Table 1: Settings and results of three experiments.
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Results: Overview

e 60 systems were ranked
with our method.

O

The continual subjective
evaluation was feasible.

e Other findings:

O

Sorting and merging can
be seamlessly evaluated
with MERGE-RANK and
MERGE.

INSERT-RANK was more
efficient than
MERGE-RANK.
INSERT-RANK was less
performant than
MERGE-RANK for
crowdsourcing.

Experiment No. 1 2 3
Sort Algorithm Insert Rank  Merge Rank -
Merge Algorithm - Merge Merge
#Sort Systems 30 30 -
#Merge Systems - 10 50
#Scores in Budget 24,960 24,960 15,540
#Convergence Cost 14,977 19,658 9,761
#Evaluated Pairs 70 98 48
#Significant Pairs 28 49 21
#Max Cost per Pair 528 413 465
#Min Cost per Pair 219 60 127

Table 1: Settings and results of three experiments.
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Our method can be used for detail evaluation.
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Results: Preference distributions
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Results: Evaluation cost distribution

Pairs with similar scores
were evaluated many
times.

Pairs with different scores
were evaluated few times.
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Results: Evaluation error distribution.
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Conclusion

e This study defined a continual subjective evaluation of speech to keep
expanding systems and scores in a subjective evaluation corpus

e \We proposed our method to realize the continual subjective evaluation based
on preference-based online learning.

e Future works:

o Application to the automatic quality evaluation.
o Application to other media evaluation than speech.
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