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Motivation

• Existing speaker anonymization systems (SASs) primarily developed
and evaluated using English speech, leading to degraded perfor-
mance when applied to other languages.

• Preliminary experiments reveal significantly degraded intelligibility
(increased CERs in ASR evaluation) for Japanese and Mandarin
speech inputs.

Figure 1: Utility evaluation via ASR on anonymized Japanese and Mandarin speech using VPC baselines.

Contributions

• Analyzed the impact of language mismatch on SSL-based speaker
anonymization systems.

• Fine-tuned a multilingual SSL model (mHuBERT) on Japanese
speech data to improve multilingual generalization.

• Demonstrated enhanced speech intelligibility in Japanese and Man-
darin while preserving speaker privacy.

SSL-based Speaker Anonymization System

Figure 2: Framework of the SSL-based multilingual SAS.

• Soft Content Encoder: pre-trained mHuBERT fine-tuned on 100h of
Japanese speech (CSJ) to predict soft content units.

• Speaker Encoder: ECAPA-TDNN providing speaker vectors.
• Speaker Anonymizer: selection-based (averaged vectors from an ex-
ternal pool) or OHNN-based (orthogonal Householder neural net-
work) to hide speaker identity.

• Vocoder: HiFi-GAN synthesizing audio from extracted F0, content
embeddings, and anonymized speaker embeddings.

Evalaution

• Language-Adapted Scenario (Japanese):
– ASR (Whisper-large-v3): JVS corpus (9,976 utterances)
– ASV (Ignorant): JTubeSpeech (76 enrollments, 276 tests)

• Language-Expanded Scenario (Mandarin):
– ASR (Whisper-large-v3): AISHELL-3 (4,246 utterances)
– ASV (Ignorant): AISHELL-3 (4,179 enrollments, 88 tests)

Table 1: Evaluation of privacy and utility of SASs in Japanese and Mandarin.

Metrics(%) Ori. Resynthesis Selection OHNN

HU-EN HU-JA mHU-JA HU-EN HU-JA mHU-JA HU-EN HU-JA mHU-JA

EERja ↑ 14.91 29.41 27.19 24.90 47.87 48.15 39.91 43.33 44.70 39.44
CERkata

ja ↓ 3.03 5.27 4.35 4.04 5.57 4.88 4.18 6.18 4.78 4.68

CERkanji
ja ↓ 6.94 9.58 8.37 8.06 9.97 9.03 8.18 10.93 8.95 8.90

EERcn ↑ 5.56 18.76 16.51 14.09 44.33 41.62 35.21 42.55 33.28 31.20
CERcn ↓ 7.50 23.10 15.95 10.39 25.97 21.24 12.67 25.74 22.76 14.13

Figure 3: CER scores and confidence intervals.

• Multilingual SSL fine-tuning markedly enhances intelligibility of
anonymized Japanese speech.

• The same model generalizes to Mandarin in a zero-shot manner,
boosting ASR utility without extra tuning.

• Speaker privacy remains robust, achieving strong anonymization
alongside improved utility.

Phonetic Analysis

Figure 4: Per-Katakana CER of synthesized Japanese Speech.

• Per-Katakana CER of Japanese speech for fine-grained diagnosis of
syllabary phonetic blocks in annonymzied utterances.

• Multilingual SSL effectively improves intelligibility of specific syllables
problematic for English-only SAS models.

Conclusion and Future Work

• English-only SASs exhibit clear utility degradation on Japanese and
Mandarin; addressing language mismatch is essential.

• Multilingual SSL fine-tuning (e.g., mHuBERT) improves intelligibility
while maintaining privacy in both adapted and zero-shot settings.

• Next: extend to more (including low-resource) languages and di-
alects, deepen phonetic and listening evaluations, and evaluate the
SASs under stronger attacker scenarios.


